不定积分题集

· · 个人记录

前言

本篇 blog 主要记载一些我遇到的关于不定积分的比较好或者常见的题目。

持续更新中。

题目

  1. 求不定积分 \int\dfrac{x^2}{1+x^4}dx

解:此为有理函数的不定积分,可使用有理函数不定积分的通用方式,即化为 7 个基本有理函数的组合。

法一:有理函数法,

\ \ \ \ 1+x^4 =(1+2x^2+x^4)-2x^2 =(1+x^2)^2-(\sqrt2x)^2 于是, $\ \ \ \ \int\dfrac{x^2}{1+x^4}dx =\int\dfrac{x^2}{(1+\sqrt2x+x^2)(1-\sqrt2x+x^2)}dx =\int(\dfrac{-\frac{\sqrt2}{4}x}{1+\sqrt2x+x^2}+\dfrac{\frac{\sqrt2}{4}x}{1-\sqrt2x+x^2})dx =-\dfrac{\sqrt2}{8}\int\dfrac{2x}{1+\sqrt2x+x^2}dx+\dfrac{\sqrt2}{8}\int\dfrac{2x}{1-\sqrt2x+x^2}dx =-\dfrac{\sqrt2}{8}\int(\dfrac{2x+\sqrt2}{1+\sqrt2x+x^2}-\dfrac{\sqrt2}{1+\sqrt2x+x^2})dx+\dfrac{\sqrt2}{8}\int(\dfrac{2x-\sqrt2}{1-\sqrt2x+x^2}+\dfrac{\sqrt2}{1-\sqrt2x+x^2})dx =\dfrac{\sqrt2}{8}\ln\dfrac{1-\sqrt2x+x^2}{1+\sqrt2x+x^2}+\dfrac{\sqrt2}{8}\int\dfrac{\sqrt2}{1+\sqrt2x+x^2}dx+\dfrac{\sqrt2}{8}\int\dfrac{\sqrt2}{1-\sqrt2x+x^2}dx =\dfrac{\sqrt2}{8}\ln\dfrac{1-\sqrt2x+x^2}{1+\sqrt2x+x^2}+\dfrac{1}{4}\int\dfrac{1}{(x+\frac{\sqrt2}{2})^2+\frac12}dx+\dfrac{1}{4}\int\dfrac{1}{(x-\frac{\sqrt2}{2})^2+\frac12}dx 法二:凑微分法, $\ \ \ \ \int\dfrac{x^2}{1+x^4}dx =\dfrac12\int\dfrac{(x^2-1)+(x^2+1)}{1+x^4}dx =\dfrac12\int\dfrac{x^2-1}{1+x^4}dx+\dfrac12\int\dfrac{x^2+1}{1+x^4}dx =\dfrac12\int\dfrac{1-\frac{1}{x^2}}{\frac{1}{x^2}+x^2}dx+\dfrac12\int\dfrac{1+\frac{1}{x^2}}{\frac{1}{x^2}+x^2}dx =\dfrac12\int\dfrac{1}{\frac{1}{x^2}+x^2}d(x+\dfrac{1}{x})+\dfrac12\int\dfrac{1}{\frac{1}{x^2}+x^2}d(x-\dfrac{1}{x}) =\dfrac12\int\dfrac{1}{(x+\frac{1}{x})^2-2}d(x+\dfrac{1}{x})+\dfrac12\int\dfrac{1}{(x-\frac{1}{x})^2+2}d(x-\dfrac{1}{x}) =\dfrac{\sqrt2}{8}\ln\dfrac{x+\frac{1}{x}-\sqrt2}{x+\frac{1}{x}+\sqrt2}+\dfrac{\sqrt2}{4}\arctan\dfrac{x-\frac{1}{x}}{\sqrt2}+C =\dfrac{\sqrt2}{8}\ln\dfrac{x^2-\sqrt2x+1}{x^2+\sqrt2x+1}+\dfrac{\sqrt2}{4}\arctan\dfrac{x^2-1}{\sqrt2x}+C

相较而言,法二更容易。

  1. 求不定积分 \int\arctan xdx

解:分部积分法。

\ \ \ \ \int\arctan xdx =x\arctan x-\int\dfrac{x}{1+x^2}dx =x\arctan x-\dfrac12\int\dfrac{1}{1+x^2}d(1+x^2) =x\arctan x-\dfrac12\ln(1+x^2)

记住这个结论。