我的日志

· · 个人记录

2025年秋季

2025-11-24

2025-11-22

2025-11-20

2025-11-18

2025-11-17

2025-11-10

2025-11-08

2025-11-06

2025-11-04

2025-10-30

2025-10-29

\begin{aligned}&\sum_{a_0=0}^{a_1}\sum_{b_0=0}^{b_1}(-1)^{a_0+b_0}\binom{a_1}{a_0}\binom{b_1}{b_0}(k+1)^{a_1b_2+b_1a_2-a_1b_1}\left(\frac k{k+1}\right)^{a_0b_2+b_0a_2-a_0b_0}\\=&(k+1)^{a_1b_2+b_1a_2-a_1b_1}\sum_{a_0=0}^{a_1}(-1)^{a_0}\binom{a_1}{a_0}\left(\frac k{k+1}\right)^{a_0b_2}{\color{red}\sum_{b_0=0}^{b_1}(-1)^{b_0}\binom{b_1}{b_0}\left(\frac k{k+1}\right)^{(a_2-a_0)b_0}}\\=&(k+1)^{a_1b_2+b_1a_2-a_1b_1}\sum_{a_0=0}^{a_1}(-1)^{a_0}\binom{a_1}{a_0}\left(\frac k{k+1}\right)^{a_0b_2}{\color{red}\left[-\left(\frac k {k+1}\right)^{a_2-a_0}+1\right]^{b_1}}\end{aligned}

(光是打出上面那个式子的 \KaTeX 就用了 580 个字符)

2025-10-28

2025-10-16

2025-10-13

(啊……好久没在这儿写过总结了)

2025-09-02

2025年暑期

2025-08-29

2025-08-28

2025-08-27

2025-08-26

2025-08-25

2025-08-24

2025-08-14

2025-08-13

2025-08-12

2025-08-11

2025-08-09

2025-08-08

(笔记:树上连通块“点-边=1”)\ 时间有限,之后再补(啊啊啊这笔记都晾在这里多久了

2025-08-07

2025-08-06

2025-08-05

2025-08-04

2025-08-03

2025-08-01

2025-07-31

2025-07-30

2025-07-29

2025-07-28

2025-07-27

2025-07-26

2025-07-25

2025-07-23

2025-07-22

2025-07-21

2025-07-11

2025-07-10

2025-07-09

2025-07-08

2025-07-07

2025-07-05

2025-07-04

2025-07-03

2025-07-02

2025-07-01

2025-06-30

2025-06-28

2025-06-27

2025-06-26

2025-06-25

2025-06-23

2025年春季

2025-06-05

2025-05-28

2025-05-27

2025-05-24

2025-05-23

2025-05-19

2025-05-12

2025-05-10

2025-05-09

2025-05-06

2025-05-02

2025-05-01

【数学】/【数论】/【中国剩余定理】

2025-04-30

【数学】/【数论】/【原根】\ 【数学】/【数论】/【离散对数】

2025-04-29

【数据结构】/【块状数据结构】/【分块思想】\ BSGS 算法本质上是一种类似于分块的折半枚举,这种方法可以推广到一类“找关键元素”的问题中。^\text{洛谷-P3306}\ 考虑下面这种问题:

对于这种问题,可以先设一个块长 B=\text O(\sqrt n),预处理出 a_0,a_B,a_{2B},\cdots,a_{\lfloor\frac{n}{B}\rfloor B} 的值并存进哈希表(例如 u_map),然后从 x 开始往前跳 f^{-1}。如果有解,那么跳最多(B-1)次一定会碰到哈希表里的值。这样就可以求出答案了。

2025-04-28

2025-04-27

2025-04-26

2025-04-21

2025-04-18

2025-04-12

2025-04-10

2025-04-09

2025-03-31