题解 P1075 【质因数分解】

· · 题解

这题有更优的解法!

先介绍一下什么叫做质因数:

质因数(素因数或质因子)在数论里是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质。因为1没有质因子,1与任何正整数(包括1本身)都是互质。正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以用指数表示。根据算术基本定理,任何正整数皆有独一无二的质因子分解式 。只有一个质因子的正整数为质数。

每个合数都可以写成几个质数(也可称为素数)相乘的形式 ,这几个质数就都叫做这个合数的质因数。如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数;而这个因数一定是一个质数。

质因数 就是一个数的约数,并且是质数。

比如8=2×2×2,2就是8的质因数;

12=2×2×3,2和3就是12的质因数。

把一个式子以12=2×2×3的形式表示,叫做分解质因数。

把一个合数写成几个质数相乘的形式表示,这也是分解质因数 ,如16=2×2×2×2,2就是16的质因数。

把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做分解质因数。 分解质因数只针对合数。(分解质因数也称分解素因数)求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。

分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。

分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。

分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。

Pollard Rho因数分解

1975年,John M. Pollard提出了第二种因数分解的方法,Pollard Rho快速因数分解。该算法时间复杂度为 。

分解质因数代码:

将一个正整数分解质因数。例如:输入90,打印出90=233*5。

程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:

(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。

(2)如果n>k,但n能被k整除,则应打印出k的值,并用n除以k的商作为新的正整数n,重复执行第一步。

(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。

然后粘代码:

#include<iostream>
#include<math.h>
#include<string.h>
using namespace std;
int main()
{
    int n;
    int i,j;
    cin>>n;
    for(i=2;i<=n;i++)
    {
        if(n%i==0)
        {
            cout<<n/i<<endl;
            break;
        }
    }
    return 0;
}

杜绝作弊,请勿抄袭