AC自动机

· · 个人记录

begin:2019/5/2

update 2020/6/12 更新了LaTeX(咕了好久

感谢大家支持!

更好的阅读体验

AC自动机详细讲解

AC自动机真是个好东西!之前学KMPNext指针搞晕了,所以咕了许久都不敢开AC自动机,近期学完之后,发现AC自动机并不是很难,特别是对于KMP​,个人感觉AC自动机KMP要好理解一些,可能是因为我对树上的东西比较敏感(实际是因为我到现在都不会KMP)。

很多人都说AC自动机是在Trie树上作KMP,我不否认这一种观点,因为这确实是这样,不过对于刚开始学AC自动机的同学们就一些误导性的理解(至少对我是这样的)。KMP是建立在一个字符串上的,现在把KMP搬到了树上,不是很麻烦吗?实际上AC自动机只是有KMP的一种思想,实际上跟一个字符串的KMP有着很大的不同。

所以看这篇blog,请放下KMP,理解好Trie,再来学习。

前置技能

1.Trie(很重要哦)

2.KMP的思想(懂思想就可以了,不需要很熟练)

问题描述

给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过

注意:是出现过,就是出现多次只算一次。

默认这里每一个人都已经会了Trie

我们将n个模式串建成一颗Trie树,建树的方式和建Trie完全一样。

假如我们现在有文本串ABCDBC

我们用文本串在Trie上匹配,刚开始会经过2、3、4号点,发现到4,成功地匹配了一个模式串,然后就不能再继续匹配了,这时我们还要重新继续从根开始匹配吗?

不,这样的效率太慢了。这时我们就要借用KMP的思想,从Trie上的某个点继续开始匹配。

明显在这颗Trie上,我们可以继续从7号点开始匹配,然后匹配到8

那么我们怎么确定从那个点开始匹配呢?我们称i匹配失败后继续从j开始匹配,jiFail(失配指针)。

构建Fail指针

Fail的含义

如果一个点$i$的$Fail$指针指向$j$。那么$root$到$j$的字符串是$root$到$i$的字符串的一个后缀。 举个例子:(例子来自上面的图 ```cpp i:4 j:7 root到i的字符串是“ABC” root到j的字符串是“BC” “BC”是“ABC”的一个后缀 所以i的Fail指针指向j ``` 同时我们发现,“$C$”也是“$ABC$”的一个后缀。 所以$Fail$指针指的$j$的深度要尽量大。 重申一下$Fail$指针的含义:**((最长的(当前字符串的后缀))**在$Trie$上可以查找到)的末尾编号。 感觉读起来挺绕口的蛤。感性理解一下就好了,没什么卵用的。知道$Fail$有什么用就行了。 ### 求$Fail

首先我们可以确定,每一个点iFail指针指向的点的深度一定是比i小的。(Fail指的是后缀啊)

第一层的Fail一定指的是root。(比深度1还浅的只有root了)

设点i的父亲faFail指针指的是fafail,那么如果fafail有和i值相同的儿子j,那么iFail就指向j。这里可能比较难理解一点,建议画图理解,不过等会转换成代码就很好理解了。

由于我们在处理i的情况必须要先处理好fa的情况,所以求Fail我们使用BFS来实现。

实现的一些细节:

void getFail(){
    for(int i=0;i<26;i++)trie[0].son[i]=1;          //初始化0的所有儿子都是1
    q.push(1);trie[1].fail=0;               //将根压入队列
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=0;i<26;i++){              //遍历所有儿子
            int v=trie[u].son[i];           //处理u的i儿子的fail,这样就可以不用记父亲了
            int Fail=trie[u].fail;          //就是fafail,trie[Fail].son[i]就是和v值相同的点
            if(!v){trie[u].son[i]=trie[Fail].son[i];continue;}  //不存在该节点,第二种情况
            trie[v].fail=trie[Fail].son[i]; //第三种情况,直接指就可以了
            q.push(v);                      //存在实节点才压入队列
        }
    }
}

查询

求出了Fail指针,查询就变得十分简单了。

为了避免重复计算,我们每经过一个点就打个标记为-1,下一次经过就不重复计算了。

同时,如果一个字符串匹配成功,那么他的Fail也肯定可以匹配成功(后缀嘛),于是我们就把Fail再统计答案,同样,FailFail也可以匹配成功,以此类推……经过的点累加flag,标记为-1

最后主要还是和Trie的查询是一样的。

int query(char* s){
    int u=1,ans=0,len=strlen(s);
    for(int i=0;i<len;i++){
        int v=s[i]-'a';
        int k=trie[u].son[v];       //跳Fail
        while(k>1&&trie[k].flag!=-1){   //经过就不统计了
            ans+=trie[k].flag,trie[k].flag=-1;  //累加上这个位置的模式串个数,标记 已 经过
            k=trie[k].fail;         //继续跳Fail
        }
        u=trie[u].son[v];           //到儿子那,存在性看上面的第二种情况
    }
    return ans;
}

代码

#include<bits/stdc++.h>
#define maxn 1000001
using namespace std;
struct kkk{
    int son[26],flag,fail;
}trie[maxn];
int n,cnt;
char s[1000001];
queue<int >q;
void insert(char* s){
    int u=1,len=strlen(s);
    for(int i=0;i<len;i++){
        int v=s[i]-'a';
        if(!trie[u].son[v])trie[u].son[v]=++cnt;
        u=trie[u].son[v];
    }
    trie[u].flag++;
}
void getFail(){
    for(int i=0;i<26;i++)trie[0].son[i]=1;          //初始化0的所有儿子都是1
    q.push(1);trie[1].fail=0;               //将根压入队列
    while(!q.empty()){
        int u=q.front();q.pop();
        for(int i=0;i<26;i++){              //遍历所有儿子
            int v=trie[u].son[i];           //处理u的i儿子的fail,这样就可以不用记父亲了
            int Fail=trie[u].fail;          //就是fafail,trie[Fail].son[i]就是和v值相同的点
            if(!v){trie[u].son[i]=trie[Fail].son[i];continue;}  //不存在该节点,第二种情况
            trie[v].fail=trie[Fail].son[i]; //第三种情况,直接指就可以了
            q.push(v);                      //存在实节点才压入队列
        }
    }
}
int query(char* s){
    int u=1,ans=0,len=strlen(s);
    for(int i=0;i<len;i++){
        int v=s[i]-'a';
        int k=trie[u].son[v];       //跳Fail
        while(k>1&&trie[k].flag!=-1){   //经过就不统计了
            ans+=trie[k].flag,trie[k].flag=-1;  //累加上这个位置的模式串个数,标记已经过
            k=trie[k].fail;         //继续跳Fail
        }
        u=trie[u].son[v];           //到下一个儿子
    }
    return ans;
}
int main(){
    cnt=1;            //代码实现细节,编号从1开始
        scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%s",s);
        insert(s);
    }
    getFail();
    scanf("%s",s);
    printf("%d\n",query(s));
    return 0;
}

updata:2019/5/7 AC自动机的应用

AC自动机的一些应用

先拿P3796 【模板】AC自动机(加强版)来说吧。

无疑,作为模板2,这道题的解法也是十分的经典。

我们先来分析一下题目:输入和模板1一样

1、求出现次数最多的次数

2、求出现次数最多的模式串

明显,我们如果统计出每一个模式串在文本串出现的次数,那么这道题就变得十分简单了,那么问题就变成了如何统计每个模式串出现的次数。

做法:AC自动机

首先题目统计的是出现次数最多的字符串,所以有重复的字符串是没有关系的。(因为后面的会覆盖前面的,统计的答案也是一样的)

那么我们就将标记模式串的flag设为当前是第几个模式串。就是下面插入时的变化:

trie[u].flag++;
变为
trie[u].flag=num; //num表示该字符串是第num个输入的

Fail指针没有变化,原先怎么求就怎么求。

查询:我们开一个数组vis,表示第i个字符串出现的次数。

因为是重复计算,所以不能标记为-1了。

我们每经过一个点,如果有模式串标记,就将vis[模式串标记]++。然后继续跳fail,原因上面说过了。

这样我们就可以将每个模式串的出现次数统计出来。剩下的大家应该都会QwQ!

总代码

//AC自动机加强版
#include<bits/stdc++.h>
#define maxn 1000001
using namespace std;
char s[151][maxn],T[maxn];
int n,cnt,vis[maxn],ans;
struct kkk{
    int son[26],fail,flag;
    void clear(){memset(son,0,sizeof(son));fail=flag=0;}
}trie[maxn];
queue<int>q;
void insert(char* s,int num){
    int u=1,len=strlen(s);
    for(int i=0;i<len;i++){
        int v=s[i]-'a';
        if(!trie[u].son[v])trie[u].son[v]=++cnt;
        u=trie[u].son[v];
    }
    trie[u].flag=num;           //变化1:标记为第num个出现的字符串
}
void getFail(){
    for(int i=0;i<26;i++)trie[0].son[i]=1;
    q.push(1);trie[1].fail=0;
    while(!q.empty()){
        int u=q.front();q.pop();
        int Fail=trie[u].fail;
        for(int i=0;i<26;i++){
            int v=trie[u].son[i];
            if(!v){trie[u].son[i]=trie[Fail].son[i];continue;}
            trie[v].fail=trie[Fail].son[i];
            q.push(v);
        }
    }
}
void query(char* s){
    int u=1,len=strlen(s);
    for(int i=0;i<len;i++){
        int v=s[i]-'a';
        int k=trie[u].son[v];
        while(k>1){
            if(trie[k].flag)vis[trie[k].flag]++;    //如果有模式串标记,更新出现次数
            k=trie[k].fail;
        }
        u=trie[u].son[v];
    }
}
void clear(){
    for(int i=0;i<=cnt;i++)trie[i].clear();
    for(int i=1;i<=n;i++)vis[i]=0;
    cnt=1;ans=0;
}
int main(){
    while(1){
        scanf("%d",&n);if(!n)break;
        clear();
        for(int i=1;i<=n;i++){
            scanf("%s",s[i]);
            insert(s[i],i);
        }
        scanf("%s",T);
        getFail();
        query(T);
        for(int i=1;i<=n;i++)ans=max(vis[i],ans);   //最后统计答案
        printf("%d\n",ans);
        for(int i=1;i<=n;i++)
        if(vis[i]==ans)
        printf("%s\n",s[i]);
    }
}

update:2019/5/9

AC自动机的优化

topo建图优化

让我们了分析一下刚才那个模板2的时间复杂度,算了不分析了,直接告诉你吧,这样暴力去跳fail的最坏时间复杂度是O(模式串长度 · 文本串长度)

为什么?因为对于每一次跳fail我们都只使深度减1,那样深度是多少,每一次跳的时间复杂度就是多少。那么还要乘上文本串长度,就几乎是 O(模式串长度 · 文本串长度)的了。

那么模板1的时间复杂度为什么就只有O(模式串总长)。因为每一个Trie上的点都只会经过一次(打了标记),但模板2每一个点就不止经过一次了(重复算,不打标记),所以时间复杂度就爆炸了。

那么我们可不可以让模板2Trie上每个点只经过一次呢?

嗯~,还真可以!

题目看这里:P5357 【模板】AC自动机(二次加强版)

做法:拓扑排序

让我们把Trie上的fail想象成一条条有向边,那么我们如果在一个点对那个点进行一些操作,那么沿着这个点连出去的点也会进行操作(就是跳fail),所以我们才要暴力跳fail去更新之后的点。

我们还是用上面的图,举个例子解释一下我刚才的意思。

我们先找到了编号4这个点,编号4fail连向编号7这个点,编号7fail连向编号9这个点。那么我们要更新编号4这个点的值,同时也要更新编号7和编号9,这就是暴力跳fail的过程。

我们下一次找到编号7这个点,还要再次更新编号9,所以时间复杂度就在这里被浪费了。

那么我们可不可以在找到的点打一个标记,最后再一次性将标记全部上传 来 更新其他点的ans。例如我们找到编号4,在编号4这个点打一个ans标记为1,下一次找到了编号7,又在编号7这个点打一个ans标记为1,那么最后,我们直接从编号4开始跳fail,然后将标记ans上传,((点i的fail)的ans)加上(点i的ans),最后使编号4ans1,编号7ans2,编号9ans2,这样的答案和暴力跳fail是一样的,并且每一个点只经过了一次

最后我们将有flag标记的ans传到vis数组里,就求出了答案。

em……,建议先消化一下。

那么现在问题来了,怎么确定更新顺序呢?明显我们打了标记后肯定是从深度大的点开始更新上去的。

怎么实现呢?拓扑排序!

我们使每一个点向它的fail指针连一条边,明显,每一个点的出度1fail只有一个),入度可能很多,所以我们就不需要像拓扑排序那样先建个图了,直接往fail指针跳就可以了。

最后我们根据fail指针建好图后(想象一下,程序里不用实现),一定是一个DAG,具体原因不解释(很简单的),那么我们就直接在上面跑拓扑排序,然后更新ans就可以了。

代码实现:

首先是getfail这里,记得将fail入度in更新。

trie[v].fail=trie[Fail].son[i]; in[trie[v].fail]++;     //记得加上入度

然后是query,不用暴力跳fail了,直接打上标记就行了,很简单吧

void query(char* s){
    int u=1,len=strlen(s);
    for(int i=0;i<len;++i)
    u=trie[u].son[s[i]-'a'],trie[u].ans++;                          //直接打上标记
}

最后是拓扑,解释都在注释里了OwO!

void topu(){
    for(int i=1;i<=cnt;++i)
    if(in[i]==0)q.push(i);              //将入度为0的点全部压入队列里
    while(!q.empty()){
        int u=q.front();q.pop();vis[trie[u].flag]=trie[u].ans;  //如果有flag标记就更新vis数组
        int v=trie[u].fail;in[v]--;     //将唯一连出去的出边fail的入度减去(拓扑排序的操作)
        trie[v].ans+=trie[u].ans;       //更新fail的ans值
        if(in[v]==0)q.push(v);          //拓扑排序常规操作
    }
}

应该还是很好理解的吧,实现起来也没有多难嘛!

对了还有重复单词的问题,和下面讲的"P3966[TJOI2013]单词"的解决方法一样的,不讲了吧。

习题讲解

基础题:P3966 [TJOI2013]单词

这道题和上面那道题没有什么不同,文本串就是将模式串用神奇的字符(例如"♂")隔起来的串。

但这道题有相同字符串要统计,所以我们用一个Map数组存这个字符串指的是Trie中的那个位置,最后把vis[Map[i]]输出就OK了。

下面是P5357【模板】AC自动机(二次加强版)的代码(套娃?大雾),剩下的大家怎么改应该还是知道的吧。

#include<bits/stdc++.h>
#define maxn 2000001
using namespace std;
char s[maxn],T[maxn];
int n,cnt,vis[200051],ans,in[maxn],Map[maxn];
struct kkk{
    int son[26],fail,flag,ans;
}trie[maxn];
queue<int>q;
void insert(char* s,int num){
    int u=1,len=strlen(s);
    for(int i=0;i<len;++i){
        int v=s[i]-'a';
        if(!trie[u].son[v])trie[u].son[v]=++cnt;
        u=trie[u].son[v];
    }
    if(!trie[u].flag)trie[u].flag=num;
    Map[num]=trie[u].flag;
}
void getFail(){
    for(int i=0;i<26;i++)trie[0].son[i]=1;
    q.push(1);
    while(!q.empty()){
        int u=q.front();q.pop();
        int Fail=trie[u].fail;
        for(int i=0;i<26;++i){
            int v=trie[u].son[i];
            if(!v){trie[u].son[i]=trie[Fail].son[i];continue;}
            trie[v].fail=trie[Fail].son[i]; in[trie[v].fail]++;
            q.push(v);
        }
    }
}
void topu(){
    for(int i=1;i<=cnt;++i)
    if(in[i]==0)q.push(i);              //将入度为0的点全部压入队列里
    while(!q.empty()){
        int u=q.front();q.pop();vis[trie[u].flag]=trie[u].ans;  //如果有flag标记就更新vis数组
        int v=trie[u].fail;in[v]--;     //将唯一连出去的出边fail的入度减去(拓扑排序的操作)
        trie[v].ans+=trie[u].ans;       //更新fail的ans值
        if(in[v]==0)q.push(v);          //拓扑排序常规操作
    }
}
void query(char* s){
    int u=1,len=strlen(s);
    for(int i=0;i<len;++i)
    u=trie[u].son[s[i]-'a'],trie[u].ans++;
}
int main(){
    scanf("%d",&n); cnt=1;
    for(int i=1;i<=n;++i){
        scanf("%s",s);
        insert(s,i);
    }getFail();scanf("%s",T);
    query(T);topu();
    for(int i=1;i<=n;++i)printf("%d\n",vis[Map[i]]);
}

To be continue……