【神秘】一阶线性常微分方程解法
oscar
·
·
个人记录
0. 转化为标准形式
y'(x)+p(x)y(x)=q(x)
1. 两边同乘神秘函数u(x)=e^{\int p(x)dx}
此处p(x)u(x)=u'(x)^*
y'(x)u(x)+p(x)u(x)y(x)=q(x)u(x)
y'(x)u(x)+u'(x)y(x)=q(x)u(x)
(y(x)u(x))'=q(x)u(x)
2. 两边积分
y(x)u(x)=\int q(x)u(x)dx
整理得y(x)=\frac{\int q(x)e^{\int p(x)dx}}{e^{\int p(x)dx}}
*. 如何构造出满足p(x)u(x)=u'(x)的u(x)
p(x)u(x)=\frac{du(x)}{dx}
p(x)dx=\frac{du(x)}{u(x)}
两边积分得\int p(x)dx=lnu(x)
即 u(x)=e^{\int p(x)dx}
**记得+C