\sum_{k=1}^{k\le n,k\text{ is prime}}\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\sum_{k=1}^{k\le n,k\text{ is prime}}\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[\gcd(i,j)=1]\sum_{k=1}^{k\le n,k\text{ is prime}}\sum_{d=1}^n\mu(d)\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor
令 s=kd
\sum_{k=1}^{k\le n,k\text{ is prime}}\sum_{d=1}^n\mu(d)\left\lfloor\frac{n}{s}\right\rfloor\left\lfloor\frac{m}{s}\right\rfloor\sum_{s=1}^n\left\lfloor\frac{n}{s}\right\rfloor\left\lfloor\frac{m}{s}\right\rfloor\sum_{k|s}^{k\text{ is prime}}\mu(\frac s k)
\sum_{s=1}^n\sum_{d|s}\sigma(d)\mu(\frac s d)\left\lfloor\frac{n}{s}\right\rfloor\left\lfloor\frac{m}{s}\right\rfloor\sum_{s=1}^n\left\lfloor\frac{n}{s}\right\rfloor\left\lfloor\frac{m}{s}\right\rfloor\sum_{d|s}\sigma(d)\mu(\frac s d)
令 f(s)=\displaystyle\sum_{d|s}\sigma(d)\mu(\frac s d)[\sigma(d)\le a]
\sum_{d=1}^nd\sum_{i=1}^{\left\lfloor\frac n{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m{d}\right\rfloor}ij[\gcd(i,j)=1]\sum_{d=1}^nd\sum_{i=1}^{\left\lfloor\frac n{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m{d}\right\rfloor}ij\sum_{q|\gcd(i,j)}\mu(q)\sum_{d=1}^nd\sum_{q=1}^{\left\lfloor\frac n d\right\rfloor}q^2\mu(q)\cdot g(\left\lfloor\frac n {dq}\right\rfloor,\left\lfloor\frac m {dq}\right\rfloor)
令 s=dq
\sum_{s=1}^ng(\left\lfloor\frac n {s}\right\rfloor,\left\lfloor\frac m {s}\right\rfloor)\sum_{dq=s}dq^2\mu(q)\sum_{s=1}^ng(\left\lfloor\frac n {s}\right\rfloor,\left\lfloor\frac m {s}\right\rfloor)\cdot s\sum_{q|s}q\mu(q)
\prod_{i=1}^n\prod_{j=1}^n\gcd(i,j)^2\prod_{d=1}^nd^{2\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=d]}\prod_{d=1}^nd^{2\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)\lfloor\frac n {dq}\rfloor^2}
f(x)=\sum_{i=1}^n\sum_{j=1}^m\left\lfloor\frac{n}{i}\right\rfloor\left\lfloor\frac{m}{j}\right\rfloor[\gcd(i,j)=x]g(x)=\sum_{x|d}^nf(d)=\sum_{i=1}^n\sum_{j=1}^m\left\lfloor\frac{n}{i}\right\rfloor\left\lfloor\frac{m}{j}\right\rfloor[x|\gcd(i,j)]=\sum_{i=1}^{\lfloor\frac n x\rfloor}\sum_{j=1}^{\lfloor \frac m x\rfloor}\left\lfloor\frac{n}{ix}\right\rfloor\left\lfloor\frac{m}{jx}\right\rfloor
根据莫比乌斯反演公式,有
f(x)=\sum_{x|d}^n\mu(d)g(\frac d x)f(1)=\sum_{d=1}^n\mu(d)g(d)
代码:[$\text{Here}$](https://www.luogu.com.cn/paste/boxwo62k)
另解:
此下令 $n=m\sum_{i=1}^n\sum_{j=1}^n\sum_{x|i}\sum_{y|j}[\gcd(x,y)=1]\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}\sum_{p=1}^{\lfloor\frac n {id}\rfloor}\sum_{q=1}^{\lfloor\frac n {jd}\rfloor}[\gcd(x,y)=1]\sum_{d=1}^n\mu(d)(\sum_{i=1}^{\lfloor\frac n d\rfloor}\lfloor\frac n {id}\rfloor)^2