【数学】三边相等的四边形与60度角

· · 个人记录

\Huge\textsf{三边相等的四边形与60}\degree\textsf{角}

解决题目的关键是:

看到两个已知角的和是60\degree的倍数,

就可以构造正三角形。

直接上题!

\Large\texttt{例<1>}

如图,AB = BC = CD,\;\angle C=80\degree ,\;\angle B=160\degree ,\angle A.

此题在我的这篇文章中已经介绍过了,但我还是把过程再来一遍。

解:

CD为边向上作正三角形CED,连接AE,则 AB = BC = CD = CE = ED

\angle BCE = \angle BCD - \angle ECD = 80\degree - 60\degree = 20\degree = 180\degree - \angle B ,\;\therefore AB \parallel CE

\because AB = BC = CE,\;\therefore \;四边形ABCE为菱形,\therefore AE = …… = ED .

\angle AED = 360\degree - \angle AEC - \angle CED = 360\degree - 160\degree - 60\degree = 140\degree \therefore \angle EAD = \angle EDA = (180\degree - 140\degree)/2 = 20\degree \therefore \angle BAD = \angle BAE + \angle EAD = 20\degree + 20\degree = 40\degree .

\Large\texttt{例<2>}

如图,AB = BC = CD ,\;\angle B = 150\degree , \angle C = 90\degree ,\angle A .

解:还是底边造正三角形。

同理ED = EC = DC = EA = AB = BC ,\;\therefore ABCE为菱形,

\therefore \angle AEC = \angle B = 150\degree ,\;\angle EAB = \angle ECB = 30\degree . \because \angle AEC = 150\degree , \;\angle DEC = 60\degree ,\;\therefore \angle AED = 150\degree ,

\because EA = ED,\;\therefore \angle EAD = \angle EDA = 15\degree .

\therefore \angle A = \angle DAE + \angle BAE = 15\degree + 30\degree = 45\degree . \Large\texttt{例<3>}

如图,AB = BC = CD ,\;\angle C = 170\degree , \angle B = 70\degree ,\angle D .

我猜我题目没念完你都算出来了。

好,有了三题,我们已经可以对这一种情况总结出通式了:

在凸四边形ABCD中,AB=BC=CD,\angle B +\angle C = 240\degree ,则剩下两个角较小的一个为\frac{1}{2} \angle B.

\large\textsf{小拓展!}

第二题其实有一种更简单的做法:

如图,往左构造正方形DCBE,连接EA.

$\therefore \angle AED = 60\degree + 90\degree = 150\degree ,\;$又因为$AE = AD ,\;\therefore \angle EAD = \angle EDA = 15\degree , \therefore \angle DAB = \angle EAB - \angle EAD = 60\degree - 15\degree = 45\degree .

然而不通用pwp

但这也只是一种情况……

\Large\texttt{例<4>}

如图,CA = AB = BD ,\;\angle A = 20\degree , \angle B = 100\degree ,\angle D .

解:继续底边造等边三角形。造完以后,连接EC、ED。

易得AE = BE = AB = AC = BD ,\;\angle EAC = \angle EAB - \angle CAB = 40\degree ,

\therefore \angle ACB = \angle ABC = 80\degree ,\;\angle ACE = \angle AEC = 70\degree ,\angle ECB = \angle ACE + \angle ACB = 150\degree . \angle DBE = \angle ABD - \angle ABE = 40\degree ,\;\angle DBC = \angle ABD - \angle ABC = 20 \degree ,\;\therefore \angle DBC = \angle EBC = 20\degree

\because EB = DB ,\;CB为公共边,\therefore \triangle CBE \cong \triangle CBD \;(SAS)

\therefore \angle DCB = \angle ECB = 150\degree ,\;\angle ECD = 360\degree - \angle DCB - \angle ECB =60\degree .

\because EC = DC ,\;\therefore \triangle ECD 为等边三角形,\;\therefore \angle EDC = 60\degree .

\therefore \angle CDB = \angle EDB - \angle EDC = 10\degree . \Large\texttt{例<5>}

如图,AB = BC = CD ,\;\angle C = 10\degree , \angle B = 110\degree ,\angle D .

我都懒得描述辅助线了。你们猜猜辅助线是什么?

解:还是底边造等边三角形。造完以后,仍然连接EA、ED。

同理可以得\angle EDB = 150\degree ,\;\therefore \triangle EDB \cong \triangle ADB \;(SAS),\;

\triangle ECD $为等边三角形$,\;\angle DAB = \angle EAB - \angle EAD = 5\degree .

于是我们出了第二个通式:

在凹四边形ABCD中,AB=BC=CD,\angle B +\angle C = 120\degree ,则剩下的锐角为\frac{1}{2} \angle C.

看累了?来张图洗洗眼睛吧awa

不急,我们没完呢!

\Large\texttt{例<5>}

如图,AB = BC = CD ,\;\angle C = 70\degree , \angle B = 50\degree ,\angle D .

你体验过一招打遍天下的快感嘛?

解:依然是底边造等边三角形。造完以后,连接EC。

AE = BE = AB = BC = CD ,\;\angle EBC = \angle EBA - \angle CBA = 10\degree

\therefore \angle AFB = \angle FEB + \angle FBE = 60\degree + 10\degree = 70\degree = \angle DCB ,\;\therefore CD \parallel EA ,\; \angle BCE = \angle BEC = 85\degree ,\;\therefore \angle DCE = 155\degree .

\because CD = EA ,\;\therefore CDAE\; 是平行四边形!

\therefore \angle D +\angle ACE = 180\degree ,\;\angle D = 25\degree ! \Large\texttt{例<6>}

如图,AB = BC = CD ,\;\angle C = 80\degree , \angle B = 40\degree ,\angle D .

在洛谷,享受切题的乐趣!

解:仍然是底边造等边三角形。造完以后,连接EC。

同理得\angle DCE = 160\degree ,\;DCEA \; 为平行四边形,\angle D = 180\degree - \angle DCE = 20\degree .

出现了!第三个通式!

在凹四边形ABCD中,AB=BC=CD,\angle B +\angle C = 120\degree ,则剩下的锐角为\frac{1}{2} \angle B.

我们还可以继续!

\Large\texttt{例<7>}

如图,AB = BC = CD ,\;EACBD交点,\angle AEB = 60\degree ,\;求证:EA = ED.

依旧是造正三角形,只不过这题如何构造比较不容易想到。

\large\texttt{法<1>}

向右构造正三角形AEF,易得E,B,F共线。

\angle EAB = \angle ECB = \alpha ,\;\angle BDC = \angle DBC = \beta.

\triangle BEC 中,\angle ECB + \angle EBC = \angle AEB,即\alpha + \beta = \angle AEB = 60\degree ;

\angle EAB + \angle FAB = \angle EAF,即\alpha + \angle BAF = 60\degree ,\;\therefore \angle BAF = \beta .

\angle FAB = \angle EDC =\beta ,\;BA = CD ,\; \angle F = \angle DEC = 60\degree ,\; \therefore \triangle FAB \cong \triangle EDC , --- $$ $$ $$\large\texttt{法<2>}$$ ![](https://cdn.luogu.com.cn/upload/image_hosting/arlne82j.png) 我这次向内构造两个正三角形$\triangle CEF$和$\triangle BEG ,

同理倒角,可得 \triangle GAB \cong \triangle FCD ,

其实这里还有一对全等$\triangle DFC \cong \triangle BEC $,但是没用上。 --- $$ $$ $$\large\texttt{小拓展!}$$ 脱离正三角形了哦qwq ![](https://cdn.luogu.com.cn/upload/image_hosting/1gt03zpc.png) 如图,$AB = BC = CD ,\;E$为$AC$、$BD$交点,$\angle AEB = 45\degree ,\;$求证:$BD = \sqrt{2}AE.

你一看到六十度变成了45度,该构造啥?

其实把正三角形换成等腰直角三角形就可以啦awa

解:向右构造等腰直角三角形AEF,易得E,B,F共线;作GC\perp BDD.

\angle EAB = \angle ECB = \alpha ,\;\angle BDC = \angle DBC = \beta.

\triangle BEC 中,\angle ECB + \angle EBC = \angle AEB,即\alpha + \beta = \angle AEB = 45\degree ;

\angle EAB + \angle FAB = \angle EAF,即\alpha + \angle BAF = 45\degree ,\;\therefore \angle BAF = \beta .

\angle FAB = \angle GBC =\beta ,\;BA = CB ,\; \angle F = \angle CGB = 90\degree ,\; \therefore \triangle FAB \cong \triangle GBC ,\;\therefore AF = BG.

由于三线合一, DG = BG = AF.

另一种方法同理。 ![](https://cdn.luogu.com.cn/upload/image_hosting/ftfa543x.png) 这里没用上的全等就有用了! $\triangle DGC \cong \triangle BEC ,\;\therefore BE = DG, \therefore AE = AF + FE = GC + \sqrt{2}BE = \frac{\sqrt{2}}{2}(GE + 2BE) = \frac{\sqrt{2}}{2} BD . \huge\textsf{总结} \small\texttt{Summary!}

总结起来就是遇到两个角和是60\degree的倍数的时候就作正三角形吧。

为什么是60\degree的倍数的时候作正三角形,我猜这样才能和正三角形挂钩。

至于结论为什么都是二倍角,就不得而知了,可能只是巧合。

附录:

1.画图软件:Desmos ( 几何区 )

2.参考资料:暂时没在网络上找到相应资料

3.转载请注明出处 \tiny\textbf{(虽然应该不会有人来抄我这个小菜鸡的文章XD)}