\begin{align*}
&\Theta \left( \sum\limits_{i = 1}^{\lceil \log n \rceil} T \left( \frac n i \right) + \log n \right) \\
= &\Theta \left( n + \frac n 2 + \frac n 4 + \cdots + 1 + \log n \right) \\
= &\Theta \left( n \frac {1 - 2^{-\log n}} {1 - 2^{-1}} + \log n \right) \\
= &\Theta(2n - 1 + \log n) \\
= &O(n) \\
\end{align*}
实现 2 若使用快速阶乘算法算法实现龟速阶乘算法,即 T(n) = O(\sqrt n \log n),则龟速阶乘算法时间复杂度为
\begin{align*}
&\Theta \left( \sum\limits_{i = 1}^{\lceil \log n \rceil} T \left( \frac n i \right) + \log n \right) \\
= &\Theta \left( \sqrt n \log n + \sqrt{\frac n 2} \log \left( \frac n 2 \right) + \sqrt{\frac n 4} \log \left( \frac n 4 \right) + \cdots + 1 + \log n \right) \\
\approx &O(\sqrt n \log n) \\
\end{align*}