高中数学笔记 - 三角函数 & 平面向量

· · 学习·文化课

数学笔记全文

修订

三角恒等变换

诱导公式

\begin{aligned}\sin(\alpha + 2k\pi)&=\sin\alpha,k \in \Z \\ \cos(\alpha + 2k\pi)&=\cos\alpha,k \in \Z \\ \tan(\alpha + 2k\pi)&=\tan\alpha,k \in \Z\end{aligned} \begin{aligned}\sin(\pi+\alpha)&=-\sin\alpha \\ \cos(\pi+\alpha)&=-\cos\alpha \\ \tan(\pi+\alpha)&=\tan\alpha\end{aligned} \begin{aligned}\sin(-\alpha)&=-\sin\alpha \\ \cos(-\alpha)&=\cos\alpha \\ \tan(-\alpha)&=-\tan\alpha\end{aligned}
\begin{aligned}\sin(\pi-\alpha)&=\sin\alpha \\ \cos(\pi-\alpha)&=-\cos\alpha \\ \tan(\pi-\alpha)&=-\tan\alpha\end{aligned} \begin{aligned}\sin(\frac{\pi}{2}-\alpha)&=\cos\alpha \\ \cos(\frac{\pi}{2}-\alpha)&=\sin\alpha \\ \sin(\frac{\pi}{2}+\alpha)&=\cos\alpha \\ \cos(\frac{\pi}{2}+\alpha)&=-\sin\alpha \\ \tan(\frac{\pi}{2}-\alpha)&=\cot \alpha \\ \cot(\frac{\pi}{2}-\alpha)&=\tan \alpha \\ \sec(\frac{\pi}{2}-\alpha)&=\csc\alpha \\ \csc(\frac{\pi}{2}-\alpha)&=\sec\alpha\end{aligned} \begin{aligned}\sin(\frac{3\pi}{2}+\alpha)&=-\cos\alpha \\ \cos(\frac{3\pi}{2}+\alpha)&=\sin\alpha \\ \sin(\frac{3\pi}{2}-\alpha)&=-\cos\alpha \\ \cos(\frac{3\pi}{2}-\alpha)&=-\sin\alpha\end{aligned}

简单的三角恒等变换

\cos(\alpha-\beta)=\cos\alpha \cos\beta+\sin\alpha \sin\beta \\ \cos(\alpha+\beta)=\cos\alpha \cos\beta-\sin\alpha \sin\beta \cos 2\alpha=\cos^2\alpha-\sin^2\alpha\\=1-2\sin^2\alpha=2\cos^2\alpha-1\\=(\cos\alpha+\sin\alpha)(\cos\alpha-\sin\alpha) \cos\frac a 2=\pm \sqrt{\frac{1+\cos\alpha}{2}}
\sin(\alpha-\beta)=\sin\alpha \cos\beta-\cos\alpha \sin\beta \\ \sin(\alpha+\beta)=\sin\alpha \cos\beta+\cos\alpha \sin\beta \sin 2\alpha=2\sin\alpha \cos\alpha \sin\frac a 2=\pm \sqrt{\frac{1-\cos\alpha}{2}}
\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha \tan\beta} \\ \tan(\alpha-\beta)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha \tan\beta} \tan 2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} \tan\frac a 2=\pm \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}\\ =\frac{\sin\alpha}{1+\cos\alpha}=\frac{1-\cos\alpha}{\sin\alpha}
\begin{aligned}\sin 3\alpha&=3\sin\alpha-4\sin^3\alpha \\ \cos 3\alpha&=4\cos^3\alpha-3\cos\alpha \\ \tan 3\alpha&=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}\end{aligned} \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ \cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \sin\alpha=\frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{a}{2}}=\frac{\sin2\alpha}{2\cos\alpha} \\ \cos\alpha=\frac{1-\tan^2\frac{a}{2}}{1+\tan^2\frac{a}{2}}=\frac{\sin2\alpha}{2\sin\alpha} \\ \tan\alpha=\frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{a}{2}}\\=\frac{(1-\tan^2\alpha)\tan2\alpha}{2}

三角函数的平移

三角不等式

\alpha,\beta,\gamma 为同一个三角形的内角,则有下列不等式:( 取等条件均为 \alpha=\beta=\gamma = \frac{\pi}{3}

\begin{aligned}\sin\alpha+\sin\beta+\sin\gamma&\leq\frac{3\sqrt{3}}{2} \\ \cos\alpha+\cos\beta+\cos\gamma&\leq\frac{3}{2} \\ \sin\alpha\sin\beta\sin\gamma&\leq\frac{3\sqrt{3}}{8} \\ \cos\alpha\cos\beta\cos\gamma&\leq\frac{1}{8}\end{aligned} \begin{aligned}\sin^2\alpha+\sin^2\beta+\sin^2\gamma&\leq\frac{9}{4} \\ \cos^2\alpha+\cos^2\beta+\cos^2\gamma&\geq\frac{3}{4} \\ \tan\alpha+\tan\beta+\tan\gamma&\geq 3\sqrt{3}\ (\ 锐角三角形\ ) \\ \cot\alpha+\cot\beta+\cot\gamma&\geq\sqrt{3}\end{aligned}
\begin{aligned}\sin\frac{\alpha}{2}+\sin\frac{\beta}{2}+\sin\frac{\gamma}{2}&\leq\frac{3}{2} \\ \cos\frac{\alpha}{2}+\cos\frac{\beta}{2}+\cos\frac{\gamma}{2}&\leq\frac{3\sqrt{3}}{2} \\ \sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sin\frac{\gamma}{2}&\leq\frac{1}{8} \\ \cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}&\leq\frac{3\sqrt{3}}{8}\end{aligned} \begin{aligned}\sin^2\frac{\alpha}{2}+\sin^2\frac{\beta}{2}+\sin^2\frac{\gamma}{2}&\geq\frac{3}{4} \\ \cos^2\frac{\alpha}{2}+\cos^2\frac{\beta}{2}+\cos^2\frac{\gamma}{2}&\leq\frac{9}{4} \\ \tan\frac{\alpha}{2}+\tan\frac{\beta}{2}+\tan\frac{\gamma}{2}&\geq\sqrt{3} \\ \cot\frac{\alpha}{2}+\cot\frac{\beta}{2}+\cot\frac{\gamma}{2}&\geq 3\sqrt{3}\end{aligned}

平面向量

定义及基本运算

\theta 0 \pi \frac{\pi}{2}
\mathbf{a}\mathbf{b} 的关系 \mathbf{a}\mathbf{b} 同向 \mathbf{a}\mathbf{b} 反向 \mathbf{a}\mathbf{b} 垂直 记作 \mathbf{a}\perp\mathbf{b}
运算符 运算法则 性质
+ 平行四边形法则
- 转化为相反向量后用平行四边形法则 -\overrightarrow{AB}=\overrightarrow{BA}
数乘 实数 \lambda 与向量 \mathbf{a} 的积仍是向量,记作 \lambda\mathbf{a} \| \lambda\mathbf{a} \| = \| \lambda \| \| \mathbf{a} \|,满足交换律,结合律
点乘 \cdot \\ ( 内积/数量积 ) \mathbf{a}\cdot\mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\|\cos\theta,\theta=\langle \mathbf{a},\mathbf{b} \rangle \mathbf{a}\perp\mathbf{b}\Longleftrightarrow\mathbf{a}\cdot\mathbf{b}=0,\|\mathbf{a}\cdot\mathbf{b}\|\leq\|\mathbf{a}\|\|\mathbf{b}\|,满足交换律,不满足结合律,不能约分\\(\mathbf{a}\cdot\mathbf{b})\mathbf{c}\neq\mathbf{a}(\mathbf{b}\cdot\mathbf{c}),但 (\mathbf{a}+\mathbf{b})\cdot\mathbf{c}=\mathbf{a}\cdot\mathbf{c}+\mathbf{b}\cdot\mathbf{c}
叉乘 \times \\ ( 外积/向量积 ) \mathbf{a}\times\mathbf{b}=\mathbf{c},其中 \\ \|\mathbf{c}\|=\|\mathbf{a}\|\|\mathbf{b}\|\sin\theta,\theta=\langle \mathbf{a},\mathbf{b} \rangle

向量的 +,-, 数乘运算统称为向量的线性运算,向量线性运算的结果仍为向量。点乘运算叫做 \mathbf{a}\mathbf{b} 的数量积/内积,结果为数量。

定理及二级结论

例题:\Delta ABC 中,DBC 中点,BE=2EAADCE 交于 O\overrightarrow{AB}\cdot\overrightarrow{AC}=6\overrightarrow{AO}\cdot\overrightarrow{EC},\frac{AB}{AC}=(\ \sqrt{3}\ \text{})

方法一:\overrightarrow{AO}=\lambda\overrightarrow{AD}=\frac{\lambda}{2}(\overrightarrow{AB}+\overrightarrow{AC})=(1-\mu)\overrightarrow{AE}+\mu\overrightarrow{AC}=\frac{1-\mu}{3}\overrightarrow{AB}+\mu\overrightarrow{AC}

解方程得 \lambda=\frac{1}{2},\mu=\frac{1}{4}\overrightarrow{AO}=\frac{1}{4}\overrightarrow{AB}+\overrightarrow{AC},\overrightarrow{EC}=-\frac{1}{3}\overrightarrow{AB}+\overrightarrow{AC}

代入题目,\frac{1}{2}AB^2=\frac{3}{2}AC^2,\frac{AB}{AC}=\sqrt{3}

方法二:作 AB 另一个三等分点 F,连接 DF 构造中位线。

平面向量的坐标表示

笛卡尔斜坐标系

$$\begin{cases}x'=x+y\cos\theta \\ y'=y\sin\theta\end{cases}\ 和\ \begin{cases}x=x'-\frac{y'}{\tan\theta} \\ y=\frac{y'}{\sin\theta}\end{cases}$$ 于是我们可以把平面向量在平面直角坐标系中的一些运算迁移到斜坐标系中: - 数量积:$(x_1',y_1')\cdot(x_2',y_2')=x_1x_2+y_1y_2+(x_1y_2+x_2y_1)\cos\theta

例题:\Delta ABC 中,D,EBC 上的两个三等分点,\overrightarrow{AB}\cdot\overrightarrow{AD}=2\overrightarrow{AC}\cdot\overrightarrow{AE},则 \cos\angle ADE 的最小值为( \frac{4}{7} )。

\overrightarrow{DC},\overrightarrow{DA} 的方向作为平面 ABC 斜坐标系中 x',y' 轴的正方向,并设 |\overrightarrow{DA}|=m,|\overrightarrow{DC}|=2,可得 A(0,m),B(-1,0),C(2,0),D(0,0),E(1,0)

于是 \overrightarrow{AB}\cdot\overrightarrow{AD}=(-1,-m)\cdot(0,-m)=m^2+m\cos\angle ADE,\overrightarrow{AC}\cdot\overrightarrow{AE}=(2,-m)\cdot(1,-m)=2+m^2-3m\cos\angle ADE

根据题意整理得 \cos\angle ADE=\frac{1}{7}(m+\frac{4}{m})\geq\frac{4}{7}

三角形

三角形四心

以下记连接顶点和各交点的直线延长至顶点对边为 AD,BE,CF,设 \Delta ABC 的外接圆半径为 RK 为平面内任意一点,\lambda,\mu,\eta\in\R^+ \Delta ABC 重心 G 垂心 H
交点 中线
基本性质 \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0} \\ \overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC}) \overrightarrow{HA}\cdot\overrightarrow{HB}=\overrightarrow{HB}\cdot\overrightarrow{HC}=\overrightarrow{HC}\cdot\overrightarrow{HA}\\AH\cdot HD=BH\cdot HE=CH\cdot CF
坐标 \displaystyle G(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3}) \displaystyle H\left(\frac{\frac{a}{\cos A}x_1+\frac{b}{\cos B}x_2+\frac{c}{\cos C}x_3}{\frac{a}{\cos A}+\frac{b}{\cos B}+\frac{c}{\cos C}},\frac{\frac{a}{\cos A}y_1+\frac{b}{\cos B}y_2+\frac{c}{\cos C}y_3}{\frac{a}{\cos A}+\frac{b}{\cos B}+\frac{c}{\cos C}}\right)
边的向量表示 \because\overrightarrow{AG}=\lambda(\overrightarrow{AB}+\overrightarrow{AC}) \\ \therefore\overrightarrow{KG}=\overrightarrow{KA}+\lambda(\overrightarrow{AB}+\overrightarrow{AC})\\=\overrightarrow{KA}+\lambda(\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|\sin B}+\frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|\sin C}) \because \lambda(\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|\cos B}+\frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|\cos C})\perp\overrightarrow{BC}\\ \text{} \\ \therefore\overrightarrow{KH}=\overrightarrow{KA}+\lambda(\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|\cos B}+\frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|\cos C})
面积 S_{\Delta BGC}=S_{\Delta AGC}=S_{AGB} S_{\Delta BHC}:S_{\Delta AHC}:S_{\Delta AHB}=\tan A:\tan B:\tan C \\ \tan A\cdot\overrightarrow{HA}+\tan B\cdot\overrightarrow{HB}+\tan C\cdot\overrightarrow{HC}=\overrightarrow{0}
定理 \\ 中线定理\begin{cases}AD^2=\frac{2b^2+2c^2-a^2}{4}\\ BE^2=\frac{2a^2+2c^2-b^2}{4}\\ CF^2=\frac{2a^2+2b^2-c^2}{4}\end{cases}\\ 中线长定理( AB \to \overrightarrow{AB}\\ AB^2+AC^2=2AD^2+2DB^2
其余等量关系 1. \min\set{KA\cdot KB\cdot KC}=GA\cdot GB\cdot GC\\ 2. 三角形中势能最小的点为重心,即 \\ \begin{aligned}&\mathrm{min}\set{KA^2+KB^2+KC^2}\\&=GA^2+GB^2+GC^2\end{aligned} 二者都可用解析几何证明 AH=2R\|\cos A\|\ \ \ \ \ BH=2R\|\cos B\|\ \ \ \ \ CH=2R\|\cos C\|\\HD:HE:HF=\|\cos B\cos C\|:\|\cos C\cos A\|:\|\cos A\cos C\|\\ HA^2+BC^2=HB^2+CA^2=HC^2+AB^2
\Delta ABC 内心 I 外心 O
交点 内角平分线 垂直平分线
基本性质 I 到三条边的距离相等 \\ \begin{cases}\overrightarrow{IA}\cdot(\frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|}-\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|})=\overrightarrow{0} \\ \overrightarrow{IB}\cdot(\frac{\overrightarrow{BC}}{\|\overrightarrow{BC}\|}-\frac{\overrightarrow{BA}}{\|\overrightarrow{BA}\|})=\overrightarrow{0} \\ \overrightarrow{IC}\cdot(\frac{\overrightarrow{CB}}{\|\overrightarrow{CB}\|}-\frac{\overrightarrow{CB}}{\|\overrightarrow{CA}\|})=\overrightarrow{0}\end{cases}\\ 以上三条公式括号内两向量可互换 OA=OB=OC \\ \angle_{AOB}=2\angle_C\ \ \ \ \angle_{AOC}=2\angle_B\ \ \ \ \angle_{BOC}=2\angle_A\\ \begin{cases}\overrightarrow{AO}\cdot\overrightarrow{AB}=\frac{1}{2}\|\overrightarrow{AB}\|^2 \\ \overrightarrow{AO}\cdot\overrightarrow{AC}=\frac{1}{2}\|\overrightarrow{AC}\|^2\\ \overrightarrow{BO}\cdot\overrightarrow{BC}=\frac{1}{2}\|\overrightarrow{BC}\|^2\end{cases}
坐标 \displaystyle I(\frac{ax_A+bx_B+cx_C}{a+b+c},\frac{ay_A+by_B+cy_C}{a+b+c}) \displaystyle O\left(\frac{\sin 2Ax_1+\sin 2Bx_2+\sin 2Cx_3}{\sin 2A+\sin 2B+\sin 2C},\frac{\sin 2Ay_1+\sin 2By_2+\sin 2Cy_3}{\sin 2A+\sin 2B+\sin 2C}\right)
边的向量表示 \begin{aligned}\overrightarrow{AI}&=\lambda(\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|}+\frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|})\\&=\mu(\sin B\cdot\overrightarrow{AB}+\sin C\cdot\overrightarrow{AC})\\&=\eta(\frac{\overrightarrow{AB}}{\sin C}+\frac{\overrightarrow{AC}}{\sin B})\end{aligned} \overrightarrow{KO}=\frac{\overrightarrow{KB}+\overrightarrow{KC}}{2}+\lambda(\frac{\overrightarrow{AB}}{\|\overrightarrow{AB}\|\cos B}+\frac{\overrightarrow{AC}}{\|\overrightarrow{AC}\|\cos C}) \\ \text{} \\ \Delta ABC 的外心在 O 点的集合中
面积 S_{\Delta BIC}:S_{\Delta AIC}:S_{\Delta AIB}=a:b:c\\a\cdot\overrightarrow{IA}+b\cdot\overrightarrow{IB}+c\cdot\overrightarrow{IC}=\overrightarrow{0} S_{\Delta BOC}:S_{\Delta AOC}:S_{\Delta AOB}=\sin 2A:\sin 2B:\sin 2C\\\sin 2A\cdot\overrightarrow{OA}+\sin 2B\cdot\overrightarrow{OB}+\sin 2C\cdot\overrightarrow{OC}=\overrightarrow{0}
定理 角平分线定理 AD 平分 \angle BAC \implies \frac{AB}{BD}=\frac{AC}{CD}\\ 鸡爪定理 \\ AI\Delta ABC 外接圆于 DID=DB=DC
其余等量关系 \|\overrightarrow{BC}\|\cdot\overrightarrow{IA}+\|\overrightarrow{AC}\|\cdot\overrightarrow{IB}+\|\overrightarrow{AB}\|\cdot\overrightarrow{IC}=\overrightarrow{0} \\ AI:BI:CI=\frac{1}{\sin\frac{A}{2}}:\frac{1}{\sin\frac{B}{2}}:\frac{1}{\sin\frac{C}{2}} \begin{cases}\overrightarrow{AO}\cdot\overrightarrow{AD}=\frac{1}{4}(\|\overrightarrow{AB}\|^2+\|\overrightarrow{AC}\|^2) \\ \overrightarrow{BO}\cdot\overrightarrow{BE}=\frac{1}{4}(\|\overrightarrow{BA}\|^2+\|\overrightarrow{BC}\|^2) \\ \overrightarrow{CO}\cdot\overrightarrow{CF}=\frac{1}{4}(\|\overrightarrow{CA}\|^2+\|\overrightarrow{CB}\|^2)\end{cases}\\ \begin{cases}\overrightarrow{AO}\cdot\overrightarrow{BC}=\frac{1}{2}(\|\overrightarrow{AC}\|^2-\|\overrightarrow{AB}\|^2) \\ \overrightarrow{BO}\cdot\overrightarrow{AC}=\frac{1}{2}(\|\overrightarrow{BC}\|^2-\|\overrightarrow{BA}\|^2) \\ \overrightarrow{CO}\cdot\overrightarrow{AB}=\frac{1}{2}(\|\overrightarrow{CB}\|^2-\|\overrightarrow{CA}\|^2)\end{cases}

例题:根据欧拉线定理,在 \Delta ABC 中有 AB=2,AC=3,以下正确的有( ACD )

A.\ \overrightarrow{AH}\cdot\overrightarrow{BC}=\overrightarrow{0}\ \ \ \ \ B.\ \overrightarrow{AG}\cdot\overrightarrow{BC}=-\frac{5}{3}\ \ \ \ \ C.\ \overrightarrow{AO}\cdot\overrightarrow{BC}=\frac{5}{2}\ \ \ \ \ D.\ \overrightarrow{OH}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}

A,因为 H 为垂心,所以 AH\perp BC,显然正确。

B\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC}),\ \overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\implies\overrightarrow{AG}\cdot\overrightarrow{BC}=\frac{5}{3}

C\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB},\ \overrightarrow{AO}\cdot\overrightarrow{AB}=\frac{1}{2}|\overrightarrow{AB}|^2,\ \overrightarrow{AO}\cdot\overrightarrow{AC}=\frac{1}{2}|\overrightarrow{AC}|^2

D\overrightarrow{OG}=\frac{1}{3}\overrightarrow{OH},\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\implies\overrightarrow{OG}=\frac{1}{3}(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC})=\frac{1}{3}\overrightarrow{OH}

三角形面积公式

以下记 S 为三角形面积,r 为三角形内切圆半径,R 为三角形外接圆半径。

例题 1:已知锐角三角形里 B=\frac{\pi}{3},c=2,求 S 范围?

\because \frac{a}{\sin A}=\frac{C}{\sin C}\ \ \ \ \ \therefore a=\frac{c\sin A}{\sin C}=\frac{2\sin A}{\sin(\frac{2\pi}{3}-A)} S=\frac{ac\sin B}{2}=\frac{\sqrt{3}}{2}\cdot\frac{c\sin A}{\sin C}=\frac{\sqrt{3}}{2}\cdot\frac{2\sin A}{\sin(\frac{2\pi}{3}-A)}=\frac{\sqrt{3}\sin A}{\frac{\sqrt{3}}{2}\cos A+\frac{1}{2}\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2\tan A}+\frac{1}{2}} \because \frac{\pi}{6}<A<\frac{\pi}{2} \ \ \ \ \ \therefore\tan A>\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{2}<\frac{\sqrt{3}}{\frac{\sqrt{3}}{2\tan A}+\frac{1}{2}}<2\sqrt{3}

例题 2:\Delta ABC 中满足 4\sqrt{3}S=a^2+b^2+c^2,求 \frac{2a}{3b+c} 的值?

S=\frac{1}{2}ab\sin Cc^2=a^2+b^2-2ab\cos C 得到 ab(\sqrt{3}\sin C+\cos C)=a^2+b^2

\therefore 2\sin(C+\frac{\pi}{6})=\frac{a^2+b^2}{ab} $\therefore \Delta ABC$ 为等边三角形,$\frac{2a}{3b+c}=\frac{1}{2}

同样的一道练习题:实数 a,b,c 满足 e^{a-b+c}+e^{a+b-c}=2e^2(a-1),求 \large(\frac{abc}{a^4+b^4+c^4})_{\max}

答案:\frac{\sqrt{2}}{8},此时 b^4=c^4=8,a=2

求三角形内最值问题

已知 \Delta ABCD 在边 BC 上。

  1. 已知 \frac{BD}{CD},AD,\cos\angle_{BAC}\implies 向量法(\overrightarrow{AD})^2=[x\overrightarrow{AB}+(1-x)\overrightarrow{AC}]^2,S=\frac{1}{2}AB\cdot AC\cdot\sin\angle_{BAC}
  2. 已知 AD\perp BC,AD,\cos\angle_{BAC}\implies 正弦定理 + 三角恒等变换AB=\frac{AD}{\sin B},AC=\frac{AD}{\sin C}
  3. 已知一角一边 \implies 正弦定理 a=\frac{b\sin A}{\sin B}\dots
  4. 已知 AD 为角平分线 \left[\overrightarrow{AD}=\lambda(\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}+\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|})\right]AB,AC\implies 角平分线定理 / 正弦定理 / 面积
  5. 求内切圆半径取值范围 r=\frac{2S}{a+b+c}

    例:已知 c=2,C=60\degree\implies r=\frac{\sqrt{3}}{2}\frac{ab}{a+b+2}\xlongequal{余弦定理}\frac{\sqrt{3}}{6}\frac{(a+b)^2-4}{a+b+2}=\frac{\sqrt{3}}{6}(a+b-2)=\frac{\sqrt{3}}{6}(\frac{c\sin A}{\sin C}+\frac{c\sin B}{\sin C})=\dots