《高等数学》习题2.3选做

Elegia

2021-06-15 09:13:57

Personal

1. 当 $\displaystyle x\rightarrow 0$ 时,下列各函数是 $\displaystyle x$ 的几阶无穷小量? (1) $\displaystyle y=x+10x^{2} +100x^{3}$ 解:$\displaystyle \lim _{x\rightarrow 0}\frac{y}{x} =\lim _{x\rightarrow 0}\left( 1+10x+100x^{2}\right) =1$,是 $\displaystyle 1$ 阶无穷小量。 (2) $\displaystyle y=\left(\sqrt{x+2} -\sqrt{2}\right)\sin x$ 解:$\displaystyle \sqrt{x+2} -\sqrt{2} =\frac{x}{\sqrt{x+2} +\sqrt{2}} =x+o( x)$,而 $\displaystyle \sin x=x+o( x)$,因此 $\displaystyle y=x^{2} +o\left( x^{2}\right)$ 是二阶无穷小量。 (3) $\displaystyle y=x( 1-\cos x)$ 解:$\displaystyle 1-\cos x=\frac{x^{2}}{2} +o\left( x^{2}\right)$,因此 $\displaystyle y=\frac{x^{3}}{2} +o\left( x^{3}\right)$ 是三阶无穷小量。 2. 已知 $\displaystyle x\rightarrow 0$ 时,$\displaystyle \alpha ( x) =o\left( x^{2}\right)$,证明 $\displaystyle \alpha ( x) =o( x)$。 解:题设即 $\displaystyle \lim _{x\rightarrow 0}\frac{\alpha ( x)}{x^{2}} =0$,那么 $\displaystyle \lim _{x\rightarrow 0}\frac{\alpha ( x)}{x} =\lim _{x\rightarrow 0}\left(\frac{\alpha ( x)}{x^{2}} \cdot x\right) =0\cdot 0=0$。也即 $\displaystyle \alpha ( x) =o( x)$ 3. 设 $\displaystyle x\rightarrow 0$ 时 $\displaystyle \alpha ( x) =o( x) ,\beta ( x) =o( x)$,证明 $\displaystyle \alpha ( x) +\beta ( x) =o( x)$ 解:$\displaystyle \lim _{x\rightarrow 0}\frac{\alpha ( x) +\beta ( x)}{x} =\lim _{x\rightarrow 0}\left(\frac{\alpha ( x)}{x} +\frac{\beta ( x)}{x}\right) =0$。也即 $\displaystyle \alpha ( x) +\beta ( x) =o( x)$。 4. 计算下列函数在指定点 $\displaystyle x_{0}$ 处的微分 (1) $\displaystyle x\sin x,x_{0} =\pi /4$ 解:$\displaystyle \mathrm{d}( x\sin x) =\sin x\mathrm{d} x+x\cos x\mathrm{d} x=(\sin x+x\cos x)\mathrm{d} x$,带入为 $\displaystyle \frac{\sqrt{2}}{2}( 1+\pi /4)\mathrm{d} x$。 (2) $\displaystyle ( 1+x)^{a} ,x_{0} =0\quad ( a >0)$ 解:$\displaystyle \mathrm{d}\left[( 1+x)^{a}\right] =a( 1+x)^{a-1}\mathrm{d} x$,带入有 $\displaystyle a\mathrm{d} x$。 7. 试计算 $\displaystyle \sqrt[5]{32.16}$ 的近似值 解:$\displaystyle \sqrt[5]{32.16} =2\cdot \sqrt[5]{1+\frac{1}{200}} \approx 2\cdot \left( 1+\frac{1}{5} \cdot \frac{1}{200}\right) =2.002$。 8. 求下列方程确定的隐函数的导函数: (1) $\displaystyle x^{2/3} +y^{2/3} =a^{2/3} \quad ( a >0)$ 解: $$ \begin{aligned} \mathrm{d}\left( x^{2/3}\right) & =-\mathrm{d}\left( y^{2/3}\right)\\ \frac{2}{3} x^{-1/3}\mathrm{d} x & =-\frac{2}{3} y^{-1/3}\mathrm{d} y\\ \frac{\mathrm{d} y}{\mathrm{d} x} & =-\frac{y^{1/3}}{x^{1/3}} \end{aligned} $$ (2) $\displaystyle ( x-a)^{2} +( y-b)^{2} =c^{2}$ 解: $$ \begin{aligned} 2( x-a)\mathrm{d} x & =-2( y-b)\mathrm{d} y\\ \frac{\mathrm{d} y}{\mathrm{d} x} & =-\frac{x-a}{y-b} \end{aligned} $$ (3) $\displaystyle \arctan\frac{y}{x} =\ln\sqrt{x^{2} +y^{2}}$ 解: $$ \begin{aligned} \arctan\frac{y}{x} & =\frac{1}{2}\ln\left( x^{2} +y^{2}\right)\\ \frac{1}{1+( y/x)^{2}} \cdot \frac{x\mathrm{d} y-y\mathrm{d} x}{x^{2}} & =\frac{2x\mathrm{d} x+2y\mathrm{d} y}{2\left( x^{2} +y^{2}\right)}\\ x\mathrm{d} y-y\mathrm{d} x & =x\mathrm{d} x+y\mathrm{d} y\\ ( x-y)\mathrm{d} y & =( x+y)\mathrm{d} x\\ \frac{\mathrm{d} y}{\mathrm{d} x} & =\frac{x+y}{x-y} \end{aligned} $$ (4) $\displaystyle y\sin x-\cos( x-y) =0$ 解: $$ \begin{aligned} \sin x\mathrm{d} y+y\cos x\mathrm{d} x+\sin( x-y) \cdot (\mathrm{d} x-\mathrm{d} y) & =0\\ (\sin x-\sin( x-y))\mathrm{d} y & =-( y\cos x+\sin( x-y))\mathrm{d} x\\ \frac{\mathrm{d} y}{\mathrm{d} x} & =\frac{\sin( x-y) +y\cos x}{\sin( x-y) -\sin x} \end{aligned} $$ 9. 求下列隐函数在指定点 $\displaystyle M$ 的导数: (1) $\displaystyle y^{2} -2xy-x^{2} +2x-4=0,M( 3,7)$ 解: $$ \begin{aligned} 2y\mathrm{d} y-2y\mathrm{d} x-2x\mathrm{d} y-2x\mathrm{d} x+2\mathrm{d} x & =0\\ ( y-x)\mathrm{d} y & =( x+y-1)\mathrm{d} x\\ \frac{\mathrm{d} y}{\mathrm{d} x} & =\frac{x+y-1}{y-x} \end{aligned} $$ 在 $\displaystyle M$ 点处的导数为 $\displaystyle \frac{3+7-1}{4} =\frac{9}{4}$。 (2) $\displaystyle e^{xy} -5x^{2} y=0,M\left(\frac{e^{2}}{10} ,\frac{20}{e^{2}}\right)$ 解: $$ \begin{aligned} e^{xy}( y\mathrm{d} x+x\mathrm{d} y) -5x^{2}\mathrm{d} y-10xy\mathrm{d} x & =0\\ \left( e^{xy} x-5x^{2}\right)\mathrm{d} y & =\left( 10xy-e^{xy} y\right)\mathrm{d} x\\ \frac{\mathrm{d} y}{\mathrm{d} x} & =\frac{10xy-e^{xy} y}{e^{xy} x-5x^{2}} \end{aligned} $$ 由 $\displaystyle xy=2$,带入有 $\displaystyle =\frac{20-e^{2} y}{e^{2} x-5x^{2}} =\frac{20-20}{e^{4} /10-e^{4} /20} =0$ 10. 设 $\displaystyle y=f( x)$ 由下列参数方程给出,求 $\displaystyle y'=\frac{\mathrm{d} y}{\mathrm{d} x}$: (1) $\displaystyle \begin{cases} x=2t-t^{2}\\ y=3t-t^{3} \end{cases}$ 解:$\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} =\frac{3-3t^{2}}{2-2t} =\frac{3( 1+t)}{2}$ (2) $\displaystyle \begin{cases} x=t\ln t\\ y=e^{t} \end{cases}$ 解:$\displaystyle \frac{\mathrm{d} y}{\mathrm{d} x} =\frac{e^{t}}{1+\ln t}$ (3) $\displaystyle \begin{cases} x=\arccos\frac{1}{\sqrt{1+t^{2}}}\\ y=\arcsin\frac{t}{\sqrt{1+t^{2}}} \end{cases}$ 解: $$ \begin{aligned} \frac{\mathrm{d} y}{\mathrm{d} x} & =\frac{\frac{1}{\sqrt{1-\frac{t^{2}}{1+t^{2}}}} \cdot \left[\frac{1}{\sqrt{1+t^{2}}} -t^{2}\left( 1+t^{2}\right)^{-3/2}\right]}{-\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}} \cdot \left[ -t\left( 1+t^{2}\right)^{-3/2}\right]}\\ & =\frac{\sqrt{t^{2}}}{1}\frac{\left[ 1-\frac{t^{2}}{1+t^{2}}\right]}{\frac{t}{1+t^{2}}}\\ & =\frac{|t|}{t}\\ & =\operatorname{sgn} t\quad ( t\neq 0) \end{aligned} $$