P2257 YY的GCD
P2257 YY的GCD
题意描述:
求
solution:
反演进阶题。
先枚举一下
由
先枚举一下
然后我们就可以直接把
考虑枚举每个质因数
剩下的部分整除分块即可。
总的时间复杂度为
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define int long long
const int N = 1e7+10;
int T,n,m,tot;
int prime[N],mu[N],ans[N];
bool check[N];
inline int read()
{
int s = 0,w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
void YYCH()
{
mu[1] = 1;
for(int i = 2; i <= N-5; i++)
{
if(!check[i])
{
prime[++tot] = i;
mu[i] = -1;
}
for(int j = 1; j <= tot && i * prime[j] <= N-5; j++)
{
check[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1; i <= tot; i++)
{
for(int j = 1; j * prime[i] <= N-5; j++)
{
ans[j * prime[i]] += mu[j];
}
}
for(int i = 1; i <= N-5; i++) ans[i] = ans[i-1] + ans[i];
}
int calc(int n,int m)
{
int res = 0;
if(n > m) swap(n,m);
for(int l = 1, r; l <= n && l <= m; l = r+1)
{
r = min(n/(n/l),m/(m/l));
res += (ans[r] - ans[l-1]) * (n/l) * (m/l);
}
return res;
}
signed main()
{
T = read(); YYCH();
while(T--)
{
n = read(); m = read();
printf("%lld\n",calc(n,m));
}
return 0;
}
其实这道题还可以做到
最后一步
后面那个
设
1.当
2.当
3.当
证明:
此时
显然
因为
所以
4.当
证明:
此时
显然有
然后就可以直接线性筛了。
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define int long long
const int N = 1e7+10;
int T,n,m,tot;
int prime[N],mu[N],ans[N];
bool check[N];
inline int read()
{
int s = 0,w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
void YYCH()
{
mu[1] = 1; ans[1] = 0;
for(int i = 2; i <= N-5; i++)
{
if(!check[i])
{
prime[++tot] = i;
mu[i] = -1;
ans[i] = 1;
}
for(int j = 1; j <= tot && i * prime[j] <= N-5; j++)
{
check[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
ans[i * prime[j]] = mu[i];
break;
}
else
{
mu[i * prime[j]] = -mu[i];
ans[i * prime[j]] = mu[i] - ans[i];
}
}
}
for(int i = 1; i <= N-5; i++) ans[i] = ans[i-1] + ans[i];
}
int calc(int n,int m)
{
int res = 0;
if(n > m) swap(n,m);
for(int l = 1, r; l <= n && l <= m; l = r+1)
{
r = min(n/(n/l),m/(m/l));
res += (ans[r] - ans[l-1]) * (n/l) * (m/l);
}
return res;
}
signed main()
{
T = read(); YYCH();
while(T--)
{
n = read(); m = read();
printf("%lld\n",calc(n,m));
}
return 0;
}