题解 P1967 【货车运输】
树链剖分版
裸的树上问题。——某神犇
考虑树链剖分(或者lct——还是刚才的神犇),本质上是求静态树上最小边权,(这棵树要用最大生成树构建),把它剖分成链之后维护最小边权的办法就很简单了,线段树即可。
#include<bits/stdc++.h>
#define N 500020
#define inf 0x7f7f7f7f
#define ll long long
using namespace std;
struct Edge{
int u,v,w,next;
}G[N];
int tot=0,head[4*N];
int size[N],wson[N],fa[N],d[N],top[N];
int tpos[N],pre[N],cnt=0;
bool vis[500005];
int a[N*4],maxv[N*4],minv[N*4];
inline void addedge(int u,int v,int w){
G[++tot].v=v;G[tot].u=u;G[tot].next=head[u];head[u]=tot;G[tot].w=w;
G[++tot].v=u;G[tot].u=v;G[tot].next=head[v];head[v]=tot;G[tot].w=w;
//a[v]=w;
}
struct Tree{
int u,v,w;
bool operator < (const Tree& x)const{
return w>x.w;}
}T[N];
int ff[N],n,m;
inline void read(int &x){
x=0;int f=1;char ch;
do{ch=getchar();if (ch=='-')f=-1;}while(ch<'0'||ch>'9');
do{x=x*10+ch-'0';ch=getchar();}while (ch>='0'&&ch<='9');
x*=f;
}
inline void readl(long long &x){
x=0;int f=1;char ch;
do{ch=getchar();if (ch=='-')f=-1;}while(ch<'0'||ch>'9');
do{x=x*10+ch-'0';ch=getchar();}while(ch>='0'&&ch<='9');
x*=f;
}
int find(int x){
if (x==ff[x])return x;
else return ff[x]=find(ff[x]);
}
void Kruskal(){
sort(T+1,T+m+1);
for (int i=1;i<=n;i++)ff[i]=i;
for (int i=1;i<=m;i++){
int u=T[i].u,v=T[i].v,w=T[i].w;
int x=find(u),y=find(v);
if (x!=y)addedge(u,v,w),ff[ff[u]]=ff[v];
}
//for (int i=1;i<=n;i++)printf("MST f[%d]=%d\n",i,ff[i]);
}
void dfs1(int u,int father){
size[u]=1;
for (int i=head[u];i;i=G[i].next){
int v=G[i].v;
if (v==father)continue;
d[v]=d[u]+1;fa[v]=u;
a[v]=G[i].w;dfs1(v,u);
size[u]+=size[v];
if (size[v]>size[wson[u]])wson[u]=v;
}
}
void dfs2(int u,int TP){
tpos[u]=++cnt;pre[cnt]=u;top[u]=TP;
if (wson[u])dfs2(wson[u],TP);
for (int i=head[u];i;i=G[i].next){
int v=G[i].v;
if (v==fa[u]||v==wson[u])continue;
dfs2(v,v);
}
}
int LCA(int x,int y){
while (top[x]!=top[y]){
if (d[top[x]]<d[top[y]])swap(x,y);
x=fa[top[x]];
}
if (d[x]>d[y]) swap(x,y);
return x;
}
inline void pushup(int o){
maxv[o]=max(maxv[o*2],maxv[o*2+1]);
minv[o]=min(minv[o*2],minv[o*2+1]);
}
void build(int o,int l,int r){
int mid=(l+r)/2;
if (l==r){maxv[o]=minv[o]=a[pre[l]];return;}
build(o*2,l,mid);build(o*2+1,mid+1,r);
pushup(o);
}
int querymax(int o,int l,int r,int ql,int qr){
int mid=(l+r)/2,ans=-inf;
if (ql<=l&&r<=qr)return maxv[o];
if (ql<=mid)ans=max(ans,querymax(o*2,l,mid,ql,qr));
if (qr>mid)ans=max(ans,querymax(o*2+1,mid+1,r,ql,qr));
pushup(o);
return ans;
}
int querymin(int o,int l,int r,int ql,int qr){
if (l>r) return 2147483647;
int mid=(l+r)/2,ans=inf;
if (ql<=l&&r<=qr)return minv[o];
if (ql<=mid)ans=min(ans,querymin(o*2,l,mid,ql,qr));
if (qr>mid)ans=min(ans,querymin(o*2+1,mid+1,r,ql,qr));
//pushup(o);
return ans;
}
int qmax(int u,int v){
int ans=-inf;
while (top[u]!=top[v]){
if (d[top[u]]<d[top[v]])swap(u,v);
ans=max(ans,querymax(1,1,n,tpos[top[u]],tpos[u]));
u=fa[top[u]];
}
if (d[u]<d[v])swap(u,v);
ans=max(ans,querymax(1,1,n,tpos[v],tpos[u]));
return ans;
}
int qmin(int u,int v){
int ans=inf;
while (top[u]!=top[v]){
if (d[top[u]]<d[top[v]])swap(u,v);
ans=min(ans,querymin(1,1,n,tpos[top[u]],tpos[u]));
u=fa[top[u]];
}
if (d[u]<d[v])swap(u,v);
ans=min(ans,querymin(1,1,n,tpos[v]+1,tpos[u]));
return ans;
}
int main(){
memset(a,-1,sizeof(a));
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
T[i].u=u;T[i].v=v;T[i].w=w;
}
Kruskal();//cout<<"!"<<endl;
dfs1(1,0);//cout<<"!"<<endl;
dfs2(1,1);//cout<<"!"<<endl;
build(1,1,n);//cout<<"!"<<endl;
int q;
//for (int i=1;i<n;i++)printf("%d ",a[i]);
scanf("%d",&q);
while (q--){
int x,y;
scanf("%d%d",&x,&y);
int xx=find(x),yy=find(y);
//printf("root[%d]=%d root[%d]=%d\n",x,xx,y,yy);
if (xx!=yy)printf("-1\n");
else printf("%d\n",qmin(x,y));//printf("LCA is %d\n",LCA(x,y));
}
return 0;
}