Failure

· · 闲话

题目

12.已知正项数列 \{ a_n \} 的前 n 项和 S_n 满足 a_1 = 1 \space , \space {a_{n+1}}^2 = S_n^2 - S_n + 1 \space (n \in {\N}^*) , 则数列 \{ a_n \} 的通项公式为_____.

我个人认为

我个人认为,这个意大利面就应该拌 42 号混凝土……

由此可见,这题非常神秘。观察得,若要使用常规的 S_n - S_{n-1} 的方法很难实现——毕竟右侧有 S_n 的二次项。于是我们考虑先求 S_n

将左侧的 a_{n+1} 换成 ( S_{n+1} - S_n ) 代入:

( S_{n+1} - S_n ) ^ 2 = S_n^2 - S_n + 1\\ S_{n+1}^2 - 2 S_n S_{n+1} + S_n - 1 = 0

由求根公式得:

S_{n+1} = S_n \pm \sqrt{S_n^2-S_n+1}

小根舍去(数列 \{ a_n \} 每一项都是正的,所以S_n 严格增)

此时发现将右边一过来,我们发现我们白做了:

\begin{aligned} S_{n+1} - S_n &= \sqrt{S_n^2-S_n+1} \\ \implies a_{n+1} &= \sqrt{a_{n+1}^2} \end{aligned}

不过不用灰心,这里距离答案还有很远的路程。

注意到,等式的右边有一个根号,这让我们想到了三角换元。

(如果你想不到,那么下次你就想到了。)

我们需要使用 tan^2 \alpha + 1 = sec^2 \alpha ,但是等式右边不是 T^2 + 1 的形式,于是我们做出如下恒等变换:

\begin{aligned} \sqrt{S_n^2-S_n+1} &= \sqrt{ S_n^2 - 2 \times S_n \times \frac{1}{2} + \frac{1}{4} + \frac{3}{4}} \\ &= \sqrt{ (S_n - \frac{1}{2})^2 + \frac{3}{4}} \end{aligned}

此时,等式右边还是不是 T^2 + 1 的形式,于是我们便令 S_n = \frac{\sqrt{3}}{2} tan \space \alpha_n + \frac{1}{2} ,这样可以使代入后化简:

\begin{aligned} \sqrt{ (S_n - \frac{1}{2})^2 + \frac{3}{4}} &= \sqrt{ (\frac{\sqrt{3}}{2} tan \space \alpha_n + \frac{1}{2} - \frac{1}{2})^2 + \frac{3}{4}} \\ &= \sqrt{ (\frac{\sqrt{3}}{2} tan \space \alpha_n)^2 + \frac{3}{4}} \\ &= \sqrt{ \frac{3}{4} tan \space \alpha_n^2 + \frac{3}{4}} \\ &= \frac{\sqrt{3}}{2} \times \sqrt{ tan \space \alpha_n^2 + 1} \\ &= \frac{\sqrt{3}}{2} \times sec \space \alpha_n \end{aligned}

我们成功的完成了化简,现在我们的式子变成了

S_{n+1} = \frac{\sqrt{3}}{2} tan \space \alpha_n + \frac{1}{2} + \frac{\sqrt{3}}{2} sec \space \alpha_n

我们希望 S_{n+1} 也是 \frac{\sqrt{3}}{2} tan \space \alpha_{n+1} + \frac{1}{2} 的形式,于是我们不难证明一个恒等式:

tan \space \alpha_n + sec \space \alpha_n = tan (\frac{\pi}{4}+\frac{\alpha_n}{2})

于是就有

\begin{aligned} S_{n+1} &= \frac{\sqrt{3}}{2} tan \space \alpha_n + \frac{1}{2} + \frac{\sqrt{3}}{2} sec \space \alpha_n \\ &= \frac{\sqrt{3}}{2} tan (\frac{\pi}{4}+\frac{\alpha_n}{2}) + \frac{1}{2} \end{aligned}

非常的Amazing啊,我们推得

\alpha_{n+1} = \frac{\pi}{4}+\frac{\alpha_n}{2}

这显然是一个一阶线性递推,使用不动点的方法,我们很快的得到:

\begin{aligned} & \alpha_{n+1} - \frac{\pi}{2} = \frac{1}{2} \times (\alpha_n-\frac{\pi}{2}) \\ \implies & \alpha_{n} - \frac{\pi}{2} = (\frac{1}{2})^{n-1} \times (\alpha_1-\frac{\pi}{2}) \end{aligned}

由我们的定义 S_n = \frac{\sqrt{3}}{2} tan \space \alpha_n + \frac{1}{2} 和题目条件 a_1 = 1 可以得到:

\begin{aligned} & a_1 = S_1 = \frac{\sqrt{3}}{2} tan \space \alpha_1 + \frac{1}{2} \\ \implies & \alpha_1 = \frac{\pi}{6} \\ \implies & \alpha_n = \frac{\pi}{2} + (\frac{1}{2})^{n-1}(\frac{\pi}{6}-\frac{\pi}{2}) \\ \implies & \alpha_n = \frac{\pi}{2} - (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \end{aligned}

(请不要在意我同时使用 a_1 \alpha_1 这一问题,我也感觉很难分辨)

继续回代:

\begin{aligned} S_n &= \frac{\sqrt{3}}{2} tan \space \alpha_n + \frac{1}{2} \\ &= \frac{\sqrt{3}}{2} tan (\frac{\pi}{2} - (\frac{1}{2})^{n-1} \times\frac{\pi}{3}) + \frac{1}{2} \\ &= \frac{\sqrt{3}}{2} cot [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ] + \frac{1}{2} \end{aligned}

胜利就在眼前,由 a_n = S_n - S_{n-1} \space , \space n \ge 2 得:

\begin{aligned} a_n &= (\frac{\sqrt{3}}{2} cot [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ] + \frac{1}{2}) - (\frac{\sqrt{3}}{2} cot [ \space (\frac{1}{2})^{n-2} \times\frac{\pi}{3} \space ] + \frac{1}{2}) \\ &= \frac{\sqrt{3}}{2} (cot [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ] - cot [ \space (\frac{1}{2})^{n-2} \times\frac{\pi}{3} \space ]) \end{aligned}

检验一下,发现 a_1 = 1 也是符合的。其实写到这里已经可以直接交卷了,但是很明显这很不简洁,我们对它进行一个化简:

\begin{aligned} a_n &= \frac{\sqrt{3}}{2} (cot [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ] - cot [ \space (\frac{1}{2})^{n-2} \times\frac{\pi}{3} \space ]) \\ &= \frac{\sqrt{3}}{2} ( \frac{1}{tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]} - \frac{1-(tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ])^2}{2tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]}) \\ &= \frac{\sqrt{3}}{2} ( \frac{2}{2tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]} - \frac{1-(tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ])^2}{2tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]}) \\ &= \frac{\sqrt{3}}{2} ( \frac{2-(1-tan^2 [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ])}{2tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]}) \\ &= \frac{\sqrt{3}}{2} ( \frac{1+tan^2 [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]}{2tan [ \space (\frac{1}{2})^{n-1} \times\frac{\pi}{3} \space ]}) \\ &= \frac{\sqrt{3}}{2} ( \frac{1}{sin [ \space (\frac{1}{2})^{n-1} \times\frac{2\pi}{3} \space ]}) \\ &= \frac{\sqrt{3}}{2} {csc [ \space (\frac{1}{2})^{n-1} \times\frac{2\pi}{3} \space ]} \\ &= \frac{\sqrt{3}}{2} {csc ( \space 0.5^n \times\frac{4\pi}{3} \space )} \end{aligned}