《高等数学》习题3.4选做

Elegia

2021-06-20 23:29:27

Personal

求下列各定积分: 1. $\displaystyle \int _{-1}^{1}\frac{x\mathrm{d} x}{\sqrt{5-4x}}$ 解:令 $\displaystyle t=\sqrt{5-4x}$,有 $$ \begin{aligned} & =\int _{3}^{1}\frac{\frac{5-t^{2}}{4}}{t}\mathrm{d}\left(\frac{5-t^{2}}{4}\right)\\ & =\int _{1}^{3}\frac{5-t^{2}}{4t} \cdotp \frac{t}{2}\mathrm{d} t\\ & =\int _{1}^{3}\frac{5-t^{2}}{8}\mathrm{d} t\\ & =\left. \frac{5t-\frac{1}{3} t^{3}}{8}\right| _{1}^{3}\\ & =\frac{1}{6} \end{aligned} $$ 2. $\displaystyle \int _{0}^{\ln 2} x\mathrm{e}^{-x}\mathrm{d} x$ 解:$\displaystyle =-\int _{0}^{\ln 2} x\mathrm{d}\left(\mathrm{e}^{-x}\right) =-\left. x\mathrm{e}^{-x}\right| _{0}^{\ln 2} +\int _{0}^{\ln 2}\mathrm{e}^{-x}\mathrm{d} x=-\frac{\ln 2}{2} -\left. \mathrm{e}^{-x}\right| _{0}^{\ln 2} =\frac{1-\ln 2}{2}$ 3. $\displaystyle \int _{0}^{1} x^{2}\sqrt{1-x^{2}}\mathrm{d} x$ 解:令 $\displaystyle x=\sin t$,有 $$ \begin{aligned} & =\int _{0}^{\pi /2}\sin^{2} t\cos t\mathrm{d}(\sin t)\\ & =\frac{1}{4}\int _{0}^{\pi /2}\sin^{2} 2t\mathrm{d} t\\ & =\frac{1}{8}\int _{0}^{\pi /2}( 1-\cos 4t)\mathrm{d} t\\ & =\frac{\pi }{16} \end{aligned} $$ 5. $\displaystyle \int _{0}^{4}\sqrt{x^{2} +9}\mathrm{d} x$ 解: $$ \begin{aligned} I & =\left. x\sqrt{x^{2} +9}\right| _{0}^{4} -\int _{0}^{4}\frac{x^{2}}{\sqrt{x^{2} +9}}\mathrm{d} x\\ & =20-\int _{0}^{4}\frac{x^{2} +9-9}{\sqrt{x^{2} +9}}\mathrm{d} x\\ 2I & =20+9\int _{0}^{4}\frac{\mathrm{d} x}{\sqrt{x^{2} +9}}\\ I & =10+\frac{9}{2}\left. \left(\ln\left| x+\sqrt{x^{2} +9}\right| \right)\right| _{0}^{4}\\ & =10+\frac{9}{2}\ln 3 \end{aligned} $$ 6. $\displaystyle \int _{0}^{1/2}\frac{x^{2}}{\sqrt{1-x^{2}}}\mathrm{d} x$ 解:令 $\displaystyle x=\sin t$,有 $$ \begin{aligned} & =\int _{0}^{\pi /6}\frac{\sin^{2} t}{\cos t}\mathrm{d}(\sin t)\\ & =\int _{0}^{\pi /6}\frac{1-\cos 2t}{2}\mathrm{d} t\\ & =\frac{\pi }{12} -\left. \frac{\sin 2t}{4}\right| _{0}^{\pi /6}\\ & =\frac{\pi }{12} -\frac{\sqrt{3}}{8} \end{aligned} $$ 8. $\displaystyle \int _{0}^{3} x\sqrt[3]{1-x^{2}}\mathrm{d} x$ 解:令 $\displaystyle t=\sqrt[3]{1-x^{2}}$,也就有 $\displaystyle x=\sqrt{1-t^{3}}$。 $$ \begin{aligned} & =\int _{1}^{-2} t\sqrt{1-t^{3}}\mathrm{d}\left(\sqrt{1-t^{3}}\right)\\ & =\int _{1}^{-2} t\cdotp \frac{-3}{2} t^{2}\mathrm{d} t\\ & =\left. -\frac{3}{8} t^{4}\right| _{1}^{-2}\\ & =-\frac{45}{8} \end{aligned} $$ 9. $\displaystyle \int _{-\pi /2}^{\pi /2}\sqrt{\cos x-\cos^{3} x}\mathrm{d} x$ 解:先根据偶函数变成一半,然后令 $\displaystyle t=\cos x$, $$ \begin{aligned} & =2\int _{1}^{0}\sqrt{t\left( 1-t^{2}\right)}\mathrm{d}(\arccos t)\\ & =2\int _{0}^{1}\sqrt{t}\mathrm{d} t\\ & =\frac{4}{3} \end{aligned} $$ 10. $\displaystyle \int _{0}^{\pi /2}\cos^{n} 2x\mathrm{d} x$,其中 $\displaystyle n$ 为正整数。 解:对于 $\displaystyle n\geq 2$,有 $$ \begin{aligned} I_{n} & =\frac{1}{2}\int _{0}^{\pi /2}\cos^{n-1} 2x\mathrm{d}(\sin 2x)\\ & =\left. \frac{1}{2}\cos^{n-1} 2x\sin 2x\right| _{0}^{\pi /2} -\frac{1}{2}\int _{0}^{\pi /2}\sin 2x\mathrm{d}\left(\cos^{n-1} 2x\right)\\ & =\frac{n-1}{2}\int _{0}^{\pi /2}\cos^{n-2} 2x\left( 1-\cos^{2} 2x\right)\mathrm{d} x\\ & =\frac{n-1}{2}( I_{n-2} -I_{n})\\ \frac{n+1}{2} I_{n} & =\frac{n-1}{2} I_{n-2}\\ I_{n} & =\frac{n-1}{n+1} I_{n-2}\\ I_{2k} & =\frac{2k-1}{2k+1} \cdots \frac{1}{3} I_{0}\\ & =\frac{( 2k-1) !!}{( 2k+1) !!} \cdotp \frac{\pi }{2}\\ I_{2k+1} & =\frac{2k}{2k+2} \cdots \frac{2}{4} I_{1} =0 \end{aligned} $$ 11. $\displaystyle \int _{0}^{a}\left( a^{2} -x^{2}\right)^{n/2}\mathrm{d} x$ 解:对于 $\displaystyle n >0$, $$ \begin{aligned} I_{n} & =\left. x\left( a^{2} -x^{2}\right)^{n/2}\right| _{0}^{a} -\int _{0}^{a} x\mathrm{d}\left[\left( a^{2} -x^{2}\right)^{n/2}\right]\\ & =+n\int _{0}^{a}\left( a^{2} -x^{2}\right)^{( n-2) /2}\left( x^{2} -a^{2} +a^{2}\right)\mathrm{d} x\\ & =na^{2} I_{n-2} -nI_{n}\\ I_{n} & =\frac{n}{n+1} a^{2} I_{n-2}\\ I_{2k} & =\frac{2ka^{2}}{2k+1} \cdots \frac{2a^{2}}{3} I_{0}\\ & =\frac{( 2k) !!}{( 2k+1) !!} a^{2k+1}\\ I_{2k+1} & =\frac{( 2k+1) a}{2k+2} \cdots \frac{3a}{4} I_{1}\\ & =\frac{( 2k+1) !!}{( 2k+2) !!} \cdot \frac{\pi a^{2k+2}}{2} \end{aligned} $$ 15. $\displaystyle \int _{0}^{\pi /4}\tan^{4} x\mathrm{d} x$ 解:令 $\displaystyle t=\tan x$,有 $$ \begin{aligned} & =\int _{0}^{1} t^{4}\mathrm{d}(\arctan t)\\ & =\int _{0}^{1}\frac{t^{4}}{1+t^{2}}\mathrm{d} t\\ & =\int _{0}^{1}\left( t^{2} -1+\frac{1}{1+t^{2}}\right)\mathrm{d} t\\ & =\frac{\pi }{4} -\frac{2}{3} \end{aligned} $$ 18. 设 $\displaystyle f( x)$ 在 $\displaystyle [ a,b]$ 上连续,证明 $\displaystyle \int _{a}^{b} f( x)\mathrm{d} x=( b-a)\int _{0}^{1} f[ a+( b-a) x]\mathrm{d} x$ 解:做换元 $\displaystyle x=a+( b-a) t$,也就有 $\displaystyle t=\frac{x-a}{b-a}$,有 $\displaystyle \mathrm{l.h.s.} =\int _{0}^{1} f[ a+( b-a) t]\mathrm{d}[ a+( b-a) t] =( b-a)\int _{0}^{1} f[ a+( b-a) t]\mathrm{d} t$,而积分的值和字母无关。 19. 证明:$\displaystyle \int _{0}^{a} x^{3} f\left( x^{2}\right)\mathrm{d} x=\frac{1}{2}\int _{0}^{a^{2}} xf( x)\mathrm{d} x$ 解:$\displaystyle \int _{0}^{a} x^{3} f\left( x^{2}\right)\mathrm{d} x=\frac{1}{2}\int _{0}^{a} x^{2} f\left( x^{2}\right)\mathrm{d}\left( x^{2}\right)$,于是换元为 $\displaystyle t=x^{2}$,就有 $\displaystyle =\frac{1}{2}\int _{0}^{a^{2}} tf( t)\mathrm{d} t$。 20. 证明 $\displaystyle \int _{0}^{1} x^{m}( 1-x)^{n}\mathrm{d} x=\int _{0}^{1} x^{n}( 1-x)^{m}\mathrm{d} x$ 解:令 $\displaystyle t=1-x$,则有 $\displaystyle \mathrm{l.h.s.} =-\int _{1}^{0}( 1-t)^{m} t^{n}\mathrm{d} t=\int _{0}^{1} t^{n}( 1-t)^{m}\mathrm{d} t$。 21. 利用分部积分公式证明若 $\displaystyle f( x)$ 连续,则 $\displaystyle \int _{0}^{x}\left[\int _{0}^{t} f( x)\mathrm{d} x\right]\mathrm{d} t=\int _{0}^{x} f( t) \cdot ( x-t)\mathrm{d} t$ 解: $$ \begin{aligned} \mathrm{l.h.s.} & =\left. x\int _{0}^{t} f( x)\mathrm{d} x\right| _{0}^{x} -\int _{0}^{x} t\mathrm{d}\left[\int _{0}^{t} f( x)\mathrm{d} x\right]\\ & =x\int _{0}^{x} f( t)\mathrm{d} t-\int _{0}^{x} tf( t)\mathrm{d} t\\ & =\int _{0}^{x} f( t) \cdot ( x-t)\mathrm{d} t \end{aligned} $$ 22. 利用换元积分法证明:$\displaystyle \int _{0}^{\pi } xf(\sin x)\mathrm{d} x=\pi \int _{0}^{\pi /2} f(\sin x)\mathrm{d} x$ 解: $$ \begin{aligned} & =\int _{0}^{\pi /2} xf(\sin x)\mathrm{d} x+\int _{\pi /2}^{\pi } xf(\sin x)\mathrm{d} x\\ & =\int _{0}^{\pi /2} xf(\sin x)\mathrm{d} x+\int _{\pi /2}^{0}( \pi -x) f(\sin( \pi -x))\mathrm{d}( \pi -x)\\ & =\int _{0}^{\pi /2} xf(\sin x)\mathrm{d} x+\int _{0}^{\pi /2}( \pi -x) f(\sin x)\mathrm{d} x\\ & =\pi \int _{0}^{\pi /2} f(\sin x)\mathrm{d} x \end{aligned} $$ 23. 利用上题结果,求 $\displaystyle \int _{0}^{\pi }\frac{x\thinspace \sin x}{1+\cos^{2} x}\mathrm{d} x$ 解: $$ \begin{aligned} & =\int _{0}^{\pi }\frac{x\thinspace \sin x}{2-\sin^{2} x}\mathrm{d} x\\ & =\pi \int _{0}^{\pi /2}\frac{\sin x}{2-\sin^{2}}\mathrm{d} x\\ & =-\pi \int _{0}^{\pi /2}\frac{\mathrm{d}(\cos x)}{1+\cos^{2} x}\\ & =\pi \int _{0}^{1}\frac{\mathrm{d} t}{1+t^{2}}\\ & = \pi \arctan t| _{0}^{1}\\ & =\frac{\pi ^{2}}{4} \end{aligned} $$ 24. 设函数 $\displaystyle f( x)$ 在 $\displaystyle ( -\infty ,+\infty )$ 上连续,以 $\displaystyle T$ 为周期,证明: (1) 函数 $\displaystyle F( x) =\frac{x}{T}\int _{0}^{T} f( t)\mathrm{d} t-\int _{0}^{x} f( t)\mathrm{d} t$ 也以 $\displaystyle T$ 为周期。 解: $$ \begin{aligned} F( x+T) -F( x) & =\frac{x+T-x}{T}\int _{0}^{T} f( t)\mathrm{d} t-\int _{x}^{x+T} f( t)\mathrm{d} t\\ & =\int _{0}^{T} f( t)\mathrm{d} t-\int _{x}^{x+T} f( t)\mathrm{d} t\\ & =0 \end{aligned} $$ 得证。 (2) $\displaystyle \lim _{x\rightarrow +\infty }\frac{1}{x}\int _{0}^{x} f( t)\mathrm{d} t=\frac{1}{T}\int _{0}^{T} f( t)\mathrm{d} t$ 解:考虑第一问中的 $\displaystyle F( x)$,由于其是连续函数,在 $\displaystyle [ 0,T]$ 上有界,又是周期函数所以整体有界,有 $\displaystyle | F( x)| < M$。而 $\displaystyle x\cdot \left| \frac{1}{x}\int _{0}^{x} f( t)\mathrm{d} t-\frac{1}{T}\int _{0}^{T} f( t)\mathrm{d} t\right| =| F( x)| < M$。因此对于任意 $\displaystyle \varepsilon >0$,当 $\displaystyle x >\frac{M}{\varepsilon }$ 时即有 $\displaystyle \left| \frac{1}{x}\int _{0}^{x} f( t)\mathrm{d} t-\frac{1}{T}\int _{0}^{T} f( t)\mathrm{d} t\right| < \varepsilon $。 25. 设 $\displaystyle f( x)$ 是以 $\displaystyle T$ 为周期的连续函数,$\displaystyle f( x_{0}) \neq 0$,且 $\displaystyle \int _{0}^{T} f( x)\mathrm{d} x=0$,证明 $\displaystyle f( x)$ 在 $\displaystyle ( x_{0} ,x_{0} +T)$ 内至少有两个根。 解:不妨设 $\displaystyle f( x_{0}) >0$,那么由于 $\displaystyle \int _{x_{0}}^{x_{0} +T} f( x)\mathrm{d} x=\int _{0}^{T} f( x)\mathrm{d} x=0$,接下来考虑是否存在一个点 $\displaystyle x_{1}$ 使得 $\displaystyle f( x_{1}) < 0$。如果不存在,说明 $\displaystyle f( x) =0$(否则积分 $\displaystyle >0$),取两个三等分点即可。如果存在,那么使用中值定理可知存在 $\displaystyle x_{2} \in ( x_{0} ,x_{1}) ,x_{3} \in ( x_{1} ,x_{0} +T)$ 使得 $\displaystyle f( x_{2}) =f( x_{3}) =0$,也就找到了两个根。 26. 求定积分 $\displaystyle \int _{0}^{2m\pi }\frac{\mathrm{d} x}{\sin^{4} x+\cos^{4} x}$,其中 $\displaystyle m$ 为正整数。 解:注意到函数有周期 $\displaystyle \pi $,因此 $$ \begin{aligned} & =2m\int _{0}^{\pi }\frac{\mathrm{d} x}{\left( 1-\cos^{2} x\right)^{2} +\cos^{4} x}\\ & =2m\int _{0}^{\pi }\frac{\mathrm{d} x}{\left(\sin^{2} x+\cos^{2} x\right)^{2} -2\sin^{2} x\cos^{2} x}\\ & =2m\int _{0}^{\pi }\frac{\mathrm{d} x}{1-\frac{1}{2}\sin^{2} 2x}\\ & =4m\int _{0}^{\pi }\frac{\mathrm{d} x}{2-\frac{1-\cos 4x}{2}}\\ & =2m\int _{0}^{\pi }\frac{\mathrm{d}( 4x)}{3+\cos 4x}\\ & =2m\int _{0}^{4\pi }\frac{\mathrm{d} x}{3+\cos x}\\ & =8m\int _{0}^{\pi }\frac{\mathrm{d} x}{3+\cos x}\\ I & =\int _{0}^{\pi }\frac{\mathrm{d} x}{3+\cos x}\\ & =\int _{0}^{\pi }\frac{\mathrm{d} x}{3+\frac{1-\tan^{2}\frac{x}{2}}{1+\tan^{2}\frac{x}{2}}}\\ & =\int _{0}^{+\infty }\frac{\left( 1+t^{2}\right)\mathrm{d}( 2\arctan t)}{4+2t^{2}}\\ & =\int _{0}^{+\infty }\frac{\mathrm{d} t}{2+t^{2}}\\ & =\left. \frac{1}{\sqrt{2}}\arctan\frac{t}{\sqrt{2}}\right| _{0}^{+\infty }\\ & =\frac{\pi }{2\sqrt{2}}\\ 8mI & =2\sqrt{2} m\pi \end{aligned} $$