P11175 【模板】基于值域预处理的快速离散对数
Genius_Star · · 题解
思路:
根据题意,考虑对值域进行预处理。
如果预处理
素数分布在
同样根号分治,然后考虑预处理
那么对于
此时可以递归到子问题
显然此时
于是单次询问复杂度是
总复杂度为
完整代码:
#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#define lowbit(x) x & (-x)
#define pi pair<ll, ll>
#define ls(k) k << 1
#define rs(k) k << 1 | 1
#define fi first
#define se second
using namespace std;
using namespace __gnu_pbds;
typedef __int128 __;
typedef long double lb;
typedef double db;
typedef unsigned long long ull;
typedef long long ll;
const int N = 4e4 + 10;
inline ll read(){
ll x = 0, f = 1;
char c = getchar();
while(c < '0' || c > '9'){
if(c == '-')
f = -1;
c = getchar();
}
while(c >= '0' && c <= '9'){
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return x * f;
}
inline void write(ll x){
if(x < 0){
putchar('-');
x = -x;
}
if(x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
int p, g, q, x;
namespace Quick_BSGS{
int p, g, pp, h, _lg1, m, cnt, B;
int lg[N], prime[N];
bool vis[N];
gp_hash_table<int, int> mp;
inline int qpow(int a, int b, int mod){
int ans = 1;
while(b){
if(b & 1)
ans = 1ll * ans * a % mod;
a = 1ll * a * a % mod;
b >>= 1;
}
return ans;
}
inline int ask(int b){
if(b == 1)
return 0;
b = qpow(b, p - 2, p);
int now = b;
for(int i = 1; i <= (p / B) + 1; ++i){
now = 1ll * now * h % p;
if(mp.find(now) != mp.end())
return i * B - mp[now];
}
return -1;
}
inline void init(int _p, int _g){
p = _p, g = _g;
pp = p - 1;
B = sqrt(p * sqrt(p) / log(sqrt(p)));
int now = 1;
for(int i = 0; i < B; ++i){
mp[now] = i;
now = 1ll * now * g % p;
}
h = now;
_lg1 = ask(p - 1);
m = sqrt(p) + 1;
lg[1] = ask(1);
for(int i = 2; i <= m; ++i){
if(!vis[i]){
prime[++cnt] = i;
lg[i] = ask(i);
}
for(int j = 1; j <= cnt && i * prime[j] <= m; ++j){
vis[i * prime[j]] = 1;
lg[i * prime[j]] = (lg[i] + lg[prime[j]]) % pp;
if(i % prime[j] == 0)
break;
}
}
// for(int i = 1; i <= 10; ++i){
// cerr << i << ' ' << lg[i] << ' ' << qpow(g, lg[i], p) << '\n';
// }
// putchar('\n');
}
inline int query(int x){
if(x <= m)
return lg[x];
int r = p % x, q = (p - r) / x;
if(r <= x - r)
return ((_lg1 + query(r)) % pp - lg[q] + pp) % pp;
return (query(x - r) - lg[q + 1] + pp) % pp;
}
};
int main(){
p = read(), g = read();
Quick_BSGS::init(p, g);
q = read();
while(q--){
x = read();
write(Quick_BSGS::query(x));
putchar('\n');
}
return 0;
}