狄利克雷卷积(f*g)=\displaystyle\sum_{d|n}f(d)g(\frac n d)
f*\epsilon=f
\mu*I=\epsilon
\varphi*I=id
\mu*id=\varphi
莫比乌斯反演f(n)=\displaystyle\sum_{d|n}g(d)\to g(n)=\displaystyle\sum_{d|n}\mu(d)f(\frac n d)
\displaystyle\sum_{d|n}\mu(d)=[n=1]\displaystyle\sum_{i=1}^n\displaystyle\sum_{j=1}^m[\gcd(i,j)=1]=\displaystyle\sum_{d=1}^{n}\mu(d)\left\lfloor\frac{n}{d}\right\rfloor\left\lfloor\frac{m}{d}\right\rfloor\displaystyle\sum_{i=1}^n\sum_{j=1}^mf(\gcd(i,j))=\sum_{s=1}^n\left\lfloor\frac n{s}\right\rfloor\left\lfloor\frac m{s}\right\rfloor\sum_{d|s}f(d)\mu(\frac s d)
11.求
\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)
\text{Link}
\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}ij[\gcd(i,j)=1]\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}ij\sum_{q|i}\sum_{q|j}\mu(q)\sum_{d=1}^nd^3\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)q^2\sum_{i=1}^{\lfloor\frac n {dq}\rfloor}\sum_{j=1}^{\lfloor\frac n {dq}\rfloor}ij
例 5 中有
g(n)=\sum_{i=1}^n\sum_{j=1}^nij=\frac{n^2(n+1)^2}4\sum_{d=1}^nd^3\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)q^2g(\lfloor\frac n {dq}\rfloor)
令 t=dq
\sum_{t=1}^ng(\lfloor\frac n {t}\rfloor)\sum_{d|t}d^3\mu(\frac t d)(\frac t d)^2\sum_{t=1}^ng(\lfloor\frac n {t}\rfloor)\sum_{d|t}d\mu(\frac t d) t^2\sum_{t=1}^ng(\lfloor\frac n {t}\rfloor) t^2\sum_{d|t}d\mu(\frac t d)
可以看出,后面是狄利克雷卷积的形式,即有 \mu*id=\varphi
\sum_{t=1}^ng(\lfloor\frac n {t}\rfloor) t^2\varphi(t)
S(n)=\sum_{i=1}^nf(i)h(1)S(n)=\sum_{i=1}^nh(i)S(\lfloor\frac n i\rfloor)-\sum_{i=2}^nh(i)S(\lfloor\frac n i\rfloor)S(n)=\sum_{i=1}^nh(i)S(\lfloor\frac n i\rfloor)-\sum_{i=2}^nh(i)S(\lfloor\frac n i\rfloor)
先算前面的
\sum_{i=1}^nh(i)S(\lfloor\frac n i\rfloor)\sum_{i=1}^nh(i)\sum_{j=1}^{\lfloor\frac n i\rfloor}f(j)\sum_{j=1}^n\sum_{i|j}f(j)h(\frac j i)\sum_{j=1}^n(f*h)(j)\sum_{j=1}^nj^3g(n)S(n)=g(n)-\sum_{i=2}^nh(i)S(\lfloor\frac n i\rfloor)
\sum_{d=1}^n\mu^2(d)d^{k+1}\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}(i+j)^k[\gcd(i,j)=1]\sum_{d=1}^n\mu^2(d)d^{k+1}\sum_{q=1}^{\lfloor\frac n {d}\rfloor}\mu(q)q^k\sum_{i=1}^{\lfloor\frac n {dq}\rfloor}\sum_{j=1}^{\lfloor\frac n {dq}\rfloor}(i+j)^k
\sum_{d=1}^n\mu^2(d)d^{k+1}\sum_{q=1}^{\lfloor\frac n {d}\rfloor}\mu(q)q^kf_k(\lfloor\frac n {s}\rfloor)\sum_{s=1}^nf_k(\lfloor\frac n {s}\rfloor)\sum_{d|s}\mu^2(d)d^{k+1}\mu(\frac s d)(\frac s d)^k\sum_{s=1}^nf_k(\lfloor\frac n {s}\rfloor)s^k\sum_{d|s}\mu^2(d)d\mu(\frac s d)
\sum_{d=1}^nd^k\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac m d\rfloor}\sum_{q|\gcd(i,j)}\mu(q)\sum_{d=1}^nd^k\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)\lfloor\frac n {dq}\rfloor\lfloor\frac m {dq}\rfloor
令 s=dq
\sum_{s=1}^n\lfloor\frac n {s}\rfloor\lfloor\frac m {s}\rfloor\sum_{d|s}d^k\mu(\frac s d)
只需求 f(x)=\displaystyle\sum_{d|x}d^k\mu(\frac x d) 的前缀和即可,注意到 f 是积性函数,设
\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}[\gcd(i,j)=1]d^{id+jd}\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac n d\rfloor}d^{id+jd}\sum_{q|\gcd(i,j)}\mu(q)\sum_{d=1}^n\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)\sum_{i=1}^{\lfloor\frac n {dq}\rfloor}\sum_{j=1}^{\lfloor\frac n {dq}\rfloor}d^{idq+jdq}
令 s=dq
\sum_{d=1}^n\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)\sum_{i=1}^{\lfloor\frac n {s}\rfloor}\sum_{j=1}^{\lfloor\frac n {s}\rfloor}d^{is+js}\sum_{d=1}^n\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q)\sum_{i=1}^{\lfloor\frac n {s}\rfloor}d^{is}\sum_{j=1}^{\lfloor\frac n {s}\rfloor}d^{js}\sum_{d=1}^n\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q){\left(\sum_{i=1}^{\lfloor\frac n {s}\rfloor}{(d^{s})}^i\right)}^2
\prod_{d=1}^nf_d^{\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac m d\rfloor}[\gcd(i,j)=1]}
考虑指数
\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac m d\rfloor}[\gcd(i,j)=1]\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q){\lfloor\frac n {dq}\rfloor}{\lfloor\frac m {dq}\rfloor}
令 s=dq
\prod_{d=1}^nf_d^{\sum_{q=1}^{\lfloor\frac n d\rfloor}\mu(q){\lfloor\frac n {s}\rfloor}{\lfloor\frac m {s}\rfloor}}\prod_{s=1}^n\prod_{d|s}f_d^{\mu(\frac s d){\lfloor\frac n {s}\rfloor}{\lfloor\frac m {s}\rfloor}}\prod_{s=1}^n{\left(\prod_{d|s}f_d^{\mu(\frac s d)}\right)}^{{\lfloor\frac n {s}\rfloor}{\lfloor\frac m {s}\rfloor}}
\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=1][\gcd(j,k)=1]\sum_{i=1}^n\sum_{j=1}^m\sum_{d|\gcd(i,j)}\mu(d)[\gcd(j,k)=1]\sum_{d=1}^n\mu(d)\sum_{d|i}^n\sum_{d|j}^m[\gcd(j,k)=1]\sum_{d=1}^n\mu(d)\sum_{i=1}^{\lfloor\frac n d\rfloor}\sum_{j=1}^{\lfloor\frac m d\rfloor}[\gcd(jd,k)=1]\sum_{d=1}^n\mu(d)[\gcd(d,k)=1]\lfloor\frac n d\rfloor\sum_{j=1}^{\lfloor\frac m d\rfloor}[\gcd(j,k)=1]
&=\lfloor\frac n k\rfloor\sum_{i=1}^k[\gcd(i,k)=1]+g(n\bmod k)\\
&=\lfloor\frac n k\rfloor\varphi(k)+g(n\bmod k)\end{aligned}\sum_{d=1}^n\mu(d)[\gcd(d,k)=1]\lfloor\frac n d\rfloor g\left(\lfloor\frac m d\rfloor\right)
&=\sum_{i=1}^n[\gcd(i,k)=1]f\left(\lfloor\frac n d\rfloor\right)-\sum_{i=2}^n[\gcd(i,k)=1]f\left(\lfloor\frac n d\rfloor\right)\\
&=\sum_{i=1}^n\sum_{j=1}^{\lfloor\frac n i\rfloor}\mu(j)[\gcd(ij,k)=1]-\sum_{i=2}^n[\gcd(i,k)=1]f\left(\lfloor\frac n d\rfloor\right)\\
&=\sum_{q=1}^n[\gcd(q,k)=1]\sum_{d|q}\mu(d)-\sum_{i=2}^n[\gcd(i,k)=1]f\left(\lfloor\frac n d\rfloor\right)\\
&=\sum_{q=1}^n[\gcd(q,k)=1][q=1]-\sum_{i=2}^n[\gcd(i,k)=1]f\left(\lfloor\frac n d\rfloor\right)\\
&=1-\sum_{i=2}^n[\gcd(i,k)=1]f\left(\lfloor\frac n d\rfloor\right)\end{aligned}