\prod_{x|f(i),x|f(j)} x \times [\gcd(\frac{f(i)}x,\frac{f(j)}x)=1]=\prod_{x|\gcd(f(i),f(j))}x \times [\frac{\gcd(f(i),f(j))}x =1]=\gcd(f(i),f(j))=f(\gcd(i,j))
则原式等于
\prod_{i=1}^{n}\prod_{j=1}^{m} f(\gcd(i,j))\large=\prod _{d=1}^{\min(n,m)}\prod_{i=1}^n \prod_{j=1}^m f(d)^{[\gcd(i,j)=d]}\large =\prod _{d=1}^{\min(n,m)} f(d)^{\sum _{i=1}^{ \lfloor\frac n d \rfloor} \sum_{j=1}^{ \lfloor \frac m d \rfloor}[\gcd(i,j)=1]} \large =\prod _{d=1}^{\min(n,m)} f(d)^{\sum _{i=1}^{ \lfloor\frac n d \rfloor} \sum_{j=1}^{ \lfloor \frac m d \rfloor} \sum_{D|i,D|j} \mu(D)} =\large \prod _{d=1}^{\min(n,m)} f(d) ^{\sum _{D=1} \mu(D) \lfloor \frac m {Dd}\rfloor \lfloor \frac n {Dd}\rfloor}\large =\prod _{d=1}^{\min(n,m)} \prod _{D=1}f(d)^{\mu(D) \lfloor \frac m {Dd}\rfloor \lfloor \frac n {Dd}\rfloor}=\large \prod_{E=1}^{\min(n,m)} (\prod _{D|E} f(\frac ED)^{\mu(D)})^{\lfloor \frac n E \rfloor \lfloor \frac m E \rfloor }
中间括号里的东西只和 E 有关,预处理一下是 O(n\log n) 的,再对整个东西整除搞整除分块(快速幂是 \log),整体是 O(n\log n+ T\sqrt n \log n) 。