Suranyi不等式

· · 个人记录

x_k>0,(n-1)\sum\limits_{k=1}^n x_k^n+n\prod\limits_{k=1}^n x_k\ge (\sum\limits_{k=1}^n x_k)(\sum\limits_{k=1}^n x_k^{n-1}).

Proof:

n=1,2时显然成立.

假设当n\le k时成立

则当n=k+1时.即证k\sum\limits_{i=1}^{k+1}x_i^{k+1}+(k+1)\prod\limits_{i=1}^{k+1}x_i\ge(\sum\limits_{i=1}^{k+1}x_i)(\sum\limits_{i=1}^{k+1}x_i^k)

由齐次性和轮换对称性不妨设x_1\ge x_2\ge x_3 \ge...\ge x_{k+1}.\sum\limits_{i=1}^k x_i=1

\therefore x_{k+1}\le \frac{1}{k}.

又由归纳假设可得k x_{k+1}\prod\limits_{i=1}^k x_i\ge x_{k+1}\sum\limits_{i=1}^k x_i^{k-1}-(k-1)x_{k+1}\sum\limits_{i=1}^k x_i^k

因此只需证

(k\sum\limits_{i=1}^k x_i^{k+1}-\sum\limits_{i=1}^k x_i^k)-x_{k+1}(k\sum\limits_{i=1}^k x_i^{k}-\sum\limits_{i=1}^k x_i^{k-1})+x_{k+1}(\prod\limits_{i=1}^k x_i+(k-1)x_{k+1}^k-x_{k+1}^{k-1})\ge0

又由切比雪夫不等式得 k\sum\limits_{i=1}^k x_i^k-\sum\limits_{i=1}^k x_i^{k-1}\ge 0

\because k x_i^{k+1}+\frac{1}{k}x_i^{k-1}\ge 2x_i^k

k\sum\limits_{i=1}^k x_i^k-\sum\limits_{i=1}^k x_i^{k-1}\ge \frac{1}{k}(k\sum\limits_{i=1}^k x_i^k-\sum\limits_{i=1}^k x_i^{k-1})\ge x_{k+1}(k\sum\limits_{i=1}^k x_i^k-\sum\limits_{i=1}^k x_i^{k-1}).

\therefore (k\sum\limits_{i=1}^k x_i^{k+1}-\sum\limits_{i=1}^k x_i^k)-x_{k+1}(k\sum\limits_{i=1}^k x_i^{k}-\sum\limits_{i=1}^k x_i^{k-1})+x_{k+1}(\prod\limits_{i=1}^k x_i+(k-1)x_{k+1}^k-x_{k+1}^{k-1}) \ge x_{k+1}(\prod\limits_{i=1}^k x_i+(k-1)x_{k+1}^k-x_{k+1}^{k-1}) \ge x_{k+1}^k+x_{k+1}^{k-1}\sum\limits_{i=1}^k(x_i-x_{k+1})+(k-1)x_{k+1}^k-x_{k+1}^{k-1} =0

因此n=k+1时成立

则由数学归纳法得对\forall n\in \mathbb{N}_+均成立