2022/12/10_Catalan

· · 算法·理论

Catalan

1. 递归定义 $$f_n = f_0 \cdot f_{n - 1} + f_1 \cdot f_{n - 2} + ... + f_{n - 1} \cdot f_0 = \sum\limits_{k=1}^nf_{k - 1} \cdot f_{n - k}$$ 2. 递推关系 $$f_n = \frac{4n - 2}{n + 1} \cdot f_{n - 1}$$ 3. 通项公式 $$f_n = \frac{C_{2n}^n}{n + 1}$$ 4. $$f_n = C_{2n}^n - C_{2n}^{n - 1}$$ ### 推导: $$ \begin{aligned} f_n &= C_{2n}^n - C_{2n}^{n - 1} \\ &= \frac{(2n)!}{n! \cdot n!} - \frac{(2n)!}{(n + 1) \cdot (n - 1)} \\ &= \frac{1}{n + 1} \cdot (\frac{(2n)! \cdot (n + 1)}{n! \cdot n!} - \frac{(2n)!}{n! \cdot (n - 1)!}) \\ &= \frac{1}{n + 1} \cdot (\frac{(2n)! \cdot (n + 1)}{n! \cdot n!} - \frac{(2n)! \cdot n}{n! \cdot n!}) \\ &= \frac{1}{n + 1} \cdot \frac{(2n)!}{n! \cdot n!} \\ &= \frac{\frac{(2n)!}{n! \cdot n!}}{n + 1} \\ &= \frac{C_{n}^{2n}}{n + 1} \\ \end{aligned} $$ 由此,得证3. $$ \begin{aligned} f_n &= \frac{4n-2}{n + 1} \cdot f_{n - 1} \\ \frac{1}{n + 1} \cdot C_{2n}^n &= \frac{4n - 2}{n + 1} \cdot \frac{1}{n} \cdot C_{2n - 2}^{n - 1} \\ C_{2n}^n &= (4n - 2) \cdot \frac{1}{n} \cdot C_{2n - 2}^{n - 1} \\ \frac{(2n)!}{n! \cdot n!} &= \frac{2n(2n - 1)}{n} \cdot \frac{(2n - 2)! \cdot n}{(n - 1)! \cdot (n - 1)! \cdot n} = \frac{(2n)!}{n! \cdot n!} \\ \end{aligned} $$ 由此,得证4.