y = (u - \frac{1}{2}v)^2 + \frac{3}{4}v^2\frac{3}{4}v^2 \le y, (u - \frac{1}{2}v)^2 \le y|v| \le 2\sqrt\frac{y}{3} \le 2\sqrt\frac{n}{3}, |u - \frac{1}{2}v| \le \sqrt y \le \sqrt n-\frac{2 \sqrt 3}{3}\sqrt n \le v \le \frac{2 \sqrt 3}{3}\sqrt n\frac{1}{2}v -\sqrt n \le u \le \frac{1}{2}v + \sqrt n-\frac{3 + \sqrt 3}{3}\sqrt n \le u \le \frac{3 + \sqrt 3}{3}\sqrt n
In summary
x = u^2 + 3uv + v^2y = u^2 + uv + v^2z = u^2 + uv - v^21 \le u \le \frac{3 + \sqrt 3}{3}\sqrt n-\frac{2 \sqrt 3}{3}\sqrt n \le v \le \frac{2 \sqrt 3}{3}\sqrt n\gcd(u, v) = 1