P5665
[CSP-S2019] 划分
先是 DP。然后单调队列可以优化到
贪心的策略是最后的那段数之和尽量小(相当于将数尽量均分,尽量少的合并,因为合并一定比不合并亏)。于是可以用一个单调队列维护到这里之前的上一段划分的末尾
时间复杂度
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const ll N=4e7,mo=(1ll<<30),M=1e5;
ll n,type,it,h,t,x,y,z,m;
__int128 ans;
int g[N+5],q[N+5];
ll b[N+5],p[2],l,r,c[N+5];
inline ll read() {
ll ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-f;ch=getchar();}
while(ch>='0'&&ch<='9') {ret=(ret<<3)+(ret<<1)+ch-'0';ch=getchar();}
return ret*f;
}
void write(__int128 x) {
static char buf[22];static __int128 len=-1;
if(x>=0) {
do{buf[++len]=x%10+48;x/=10;}while(x);
}
else {
putchar('-');
do{buf[++len]=-(x%10)+48;x/=10;}while(x);
}
while(len>=0) putchar(buf[len--]);
}
int main() {
n=read();type=read();
if(type==0) {
for(ll i=1;i<=n;i++) {
c[i]=c[i-1]+read();
}
}
if(type==1) {
x=read();y=read();z=read();b[1]=read();b[2]=read();m=read();
for(ll i=3;i<=n;i++) {
b[i]=(x*b[i-1]+y*b[i-2]+z)%mo;
}
for(ll i=1;i<=m;i++) {
p[i&1]=read();l=read();r=read();
for(ll j=p[(i-1)&1]+1;j<=p[i&1];j++) {
c[j]=c[j-1]+(b[j]%(r-l+1))+l;
}
}
}
h=1;t=1;
for(ll i=1;i<=n;i++) {
while(h<t&&2*c[q[h+1]]-c[g[q[h+1]]]<=c[i]) h++;
g[i]=q[h];
while(h<t&&2*c[i]-c[g[i]]<=2*c[q[t]]-c[g[q[t]]]) t--;
q[++t]=i;
}
it=n;
while(it) {
ans+=((__int128)c[it]-c[g[it]])*(c[it]-c[g[it]]);
it=g[it];
}
write(ans);
return 0;
}