背诵内容

· · 个人记录

我没有数论基础 我没有数论基础 我没有数论基础

今天 sbh 教我学数论,这是写给自己看的

剩下忘了,写到就补

都是积性函数

int p[R],cnt;
int phi[R],mu[R];
ll s[R],res;
bool b[R];
void get_p(){
    for(int i=1;i<R;i++) b[i]=1;
    b[1]=0;
    phi[1]=mu[1]=1;
    for(int i=2;i<R;i++){
        if(b[i]){
            p[++cnt]=i;
            phi[i]=i-1;
            mu[i]=-1;
        }
        for(int j=1;j<=cnt&&i*p[j]<R;j++){
            b[i*p[j]]=0;
            if(!(i%p[j])){
                phi[i*p[j]]=phi[i]*p[j];
                mu[i*p[j]]=0;
                break;
            }
            phi[i*p[j]]=phi[i]*(p[j]-1);
            mu[i*p[j]]=-mu[i];
        }
    }
}

https://www.luogu.com.cn/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi

https://zhuanlan.zhihu.com/p/138897504

\sum_{i=1}^n\sum_{j=1}^m\operatorname{lcm}(i,j) \sum_{d}^{\min(n,m)}\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{d}\times[\gcd(i,j)=d] \sum_{d}^{\min(n,m)}d(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}ij\times[\gcd(i,j)=1]) \sum_{d}^{\min(n,m)}d(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}ij\sum_{e|i,e|j}\mu(e)) \sum_{d}^{\min(n,m)}d(\sum_e^{\lfloor\frac{min(n,m)}{d}\rfloor}\mu(e)(\sum_{e|i}^{\lfloor\frac{n}{d}\rfloor}\sum_{e|j}^{\lfloor\frac{m}{d}\rfloor}ij)) \sum_{d}^{\min(n,m)}d(\sum_e^{\lfloor\frac{min(n,m)}{d}\rfloor}\mu(e)e^2\frac{\lfloor\frac{n}{ed}\rfloor( \lfloor\frac{n}{ed}\rfloor+1)\lfloor\frac{m}{ed}\rfloor( \lfloor\frac{m}{ed}\rfloor+1)}{4}

T=ed

\sum_{T}^{\min(n,m)}\frac{\lfloor\frac{n}{T}\rfloor( \lfloor\frac{n}{T}\rfloor+1)\lfloor\frac{m}{T}\rfloor( \lfloor\frac{m}{T}\rfloor+1)T}{4}\sum_{e|T}(\mu(e)\times e)

g(x)=\sum_{d|x}(\mu(d)\times d)