\sum_{d=1}^nd\sum_{i=1}^{\left\lfloor{\frac{n}{d}}\right\rfloor}\sum_{j=1}^{\left\lfloor{\frac{m}{d}}\right\rfloor}\sum_{p|\gcd(i,j)}\mu(p)\sum_{d=1}^nd\sum_{i=1}^{\left\lfloor{\frac{n}{d}}\right\rfloor}\sum_{j=1}^{\left\lfloor{\frac{m}{d}}\right\rfloor}\sum_{p|i,j}\mu(p)\sum_{d=1}^n d \sum_{p=1}^{\left\lfloor{\frac{n}{d}}\right\rfloor}\sum_{i=1}^{\left\lfloor{\frac{n}{dp}}\right\rfloor}\sum_{j=1}^{\left\lfloor{\frac{m}{dp}}\right\rfloor}\mu(p)\sum_{d=1}^n d \sum_{p=1}^{\left\lfloor{\frac{n}{d}}\right\rfloor}\mu(p)\left\lfloor{\frac{n}{dp}}\right\rfloor \left\lfloor{\frac{m}{dp}}\right\rfloor
到这里可以 O(n\sqrt n) 搞了。
考虑优化:设 x=dp 有:
\sum_{d=1}^n d \sum_{d|x}\mu(\frac{x}{d})\left\lfloor{\frac{n}{x}}\right\rfloor \left\lfloor{\frac{m}{x}}\right\rfloor\sum_{x=1}^n \left\lfloor{\frac{n}{x}}\right\rfloor \left\lfloor{\frac{m}{x}}\right\rfloor\sum_{d|x}d \mu(\frac{x}{d})
设后面的式子等于 h
h = \mu * Idh*1=\mu*Id*1h*1=\epsilon*Id=Id = 1*\varphi