三角恒等变换

· · 个人记录

诱导公式

\sin(\alpha+2\pi)=\sin\alpha \cos(\alpha+2\pi)=\cos\alpha \tan(\alpha+\pi)=\tan\alpha \sin(\alpha+\pi)=-\sin\alpha \cos(\alpha+\pi)=-\cos\alpha \sin(\pi-\alpha)=\sin\alpha \cos(\pi-\alpha)=-\cos\alpha \tan(\pi-\alpha)=-\tan\alpha \sin(-\alpha)=-\sin\alpha \cos(-\alpha)=\cos\alpha \tan(-\alpha)=-\tan\alpha \sin(\alpha+\frac\pi2)=\cos\alpha \cos(\alpha+\frac\pi2)=-\sin\alpha \tan(\alpha+\frac\pi2)=-\frac 1 {\tan\alpha} \sin(\frac\pi2-\alpha)=\cos\alpha \cos(\frac\pi2-\alpha)=\sin\alpha \tan(\frac\pi2-\alpha)=\frac1{\tan\alpha}

余弦和差变换:

\cos (\alpha+\beta)=\cos \alpha \cos \beta - \sin\alpha \sin \beta \cos (\alpha - \beta)=\cos \alpha \cos \beta + \sin \alpha \sin \beta

正弦和差变换:

\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta \sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta

弦的二倍角公式:

\sin 2\alpha=2\sin\alpha\cos\alpha \cos2\alpha=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha

降幂公式:

\cos^2\alpha=\frac {\cos 2\alpha+1} 2 \sin^2\alpha=\frac {1-\cos2\alpha}2 \sin\alpha\cos\alpha=\frac {\sin2\alpha}2

正切和差变换:

\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta} \tan(\alpha-\beta)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}

正切公式变形:

\tan \alpha+\tan \beta+\tan\alpha\tan\beta\tan(\alpha+\beta)=\tan(\alpha+\beta) \tan\alpha+\tan\beta=\tan(\alpha+\beta)(1-\tan\alpha\tan\beta) \tan\alpha\tan\beta=1-\frac{\tan\alpha+\tan\beta}{\tan(\alpha+\beta)}=\frac{\tan\alpha-\tan\beta}{\tan(\alpha-\beta)}-1 \tan\alpha-\tan\beta-\tan\alpha\tan\beta\tan(\alpha-\beta)=\tan(\alpha-\beta) \tan\alpha-\tan\beta=\tan(\alpha-\beta)(1+\tan\alpha\tan\beta)

正切的二倍角公式:

\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}

积化和差公式:

\sin\alpha\cos\beta=\frac1 2[\sin(\alpha+\beta)+\sin(\alpha-\beta)] \cos\alpha\sin\beta=\frac 1 2 [\sin(\alpha+\beta)-\sin(\alpha-\beta)] \cos\alpha\cos\beta=\frac1 2[\cos(\alpha+\beta)+\cos(\alpha-\beta)] \sin\alpha\sin\beta=-\frac 1 2[\cos(\alpha+\beta)-\cos(\alpha-\beta)]

和差化积公式:

\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}2 \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2 \cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}2\cos\frac{\alpha-\beta}2 \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2 \tan \alpha+\tan \beta=\frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta} \tan\alpha-\tan\beta=\frac{\sin(\alpha-\beta)}{\cos\alpha\cos\beta}

万能代换公式:

\sin\alpha=\frac{2\tan\frac\alpha 2}{1+\tan^2\frac\alpha2} \cos\alpha=\frac{1-\tan^2\frac\alpha 2}{1+\tan^2\frac\alpha2} \tan\alpha=\frac{2\tan\frac\alpha2}{1-\tan^2\frac\alpha2}

辅助角公式:

a\sin\alpha+b\cos\alpha=\sqrt{a^2+b^2}\sin(\alpha+\varphi),\tan\alpha=\frac b a \text{其中:}\sin\varphi=\frac b {\sqrt{a^2+b^2}},\cos\varphi=\frac a{\sqrt{a^2+b^2}}

证明:

(a,b)在角\varphi的终边上的一点,\therefore\tan\varphi=\frac b a

由三角函数定义可知:

\cos\varphi=\frac a {\sqrt{a^2+b^2}} \sin\varphi=\frac b {\sqrt{a^2+b^2}}

所以:

a=\sqrt{a^2+b^2}\cos\varphi b=\sqrt{a^2+b^2}\sin\varphi

因此:

a\sin\alpha+b\cos\alpha=\sqrt{a^2+b^2}(\cos\varphi\sin\alpha+\sin\varphi\cos\alpha)

又因为:

\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\alpha

所以:

a\sin\alpha+b\cos\alpha=\sqrt{a^2+b^2}\sin(\alpha+\varphi),\tan\varphi=\frac b a

\color{red}\text{注意:}

限制条件\tan\varphi=\frac b a还不够精确,那如何精确判断\varphi呢?

\because\cos\varphi=\frac a {\sqrt{a^2+b^2}},\sin\varphi=\frac b{\sqrt{a^2+b^2}} \therefore a,b\text{的正负性分别与}\cos\varphi,\sin\varphi\text{相同}

这样,就能通过确定a,b的正负性,然后确定\cos\varphi,\sin\varphi的正负性,从而确定\varphi所在的象限来精确确定\varphi

三倍角公式:

\sin3\alpha=3\sin\alpha-4\sin^3\alpha \cos3\alpha=-3\cos\alpha+4\cos^3\alpha \tan3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}

常见结论:

\tan\frac\theta2=\frac{\sin\theta}{1+\cos\theta}=\frac{1-\cos\theta}{\sin\theta} \tan(\alpha+\frac\pi4)=\frac{1+\tan\alpha}{1-\tan\alpha} \tan(\frac\pi 4-\alpha)=\frac{1-\tan\alpha}{1+\tan\alpha} \tan\alpha=\frac 1 2,\tan\beta=\frac1 3,\alpha,\beta\in(0,\frac \pi 2)\Rightarrow\alpha+\beta=\frac \pi2 \sin\alpha+\cos\alpha=\sqrt 2\sin(\alpha+\frac \pi4),\sin\alpha-\cos\alpha=\sqrt 2\sin(\alpha-\frac \pi 4)