积性函数

· · 个人记录

唯一分解定理

积性函数

\epsilon(n):元函数。

I(n):恒等函数。

id_k(n):幂函数。

\mu(n):莫比乌斯函数。

\varphi(n):欧拉函数。

\begin{aligned} \varphi(n) & =\prod\limits_{i=1}^m \varphi(p_i^{k_i}) \\ & =\prod\limits_{i=1}^m p_i^{k_i}-p_i^{k_i-1} \\ & =\prod\limits_{i=1}^m p_i^{k_i-1}(p_i-1) \\ & =\prod\limits_{i=1}^m p_i^{k^i}\frac{p_i^{k_i-1}(p_i-1)}{p_i^{k^i}} \\ & =\prod\limits_{i=1}^m p_i^{k^i} \times \prod\limits_{i=1}^m \frac{p_i-1}{p_i} \\ & =n\prod\limits_{i=1}^m (1-\frac{1}{p_i}) \end{aligned}

d(n):约数个数函数。

\sigma_0(n):约数和函数。

\omega(n):质因数个数函数。

狄利克雷卷积

结合律:(f\ast g)\ast h=f\ast (g\ast h)

单位元:f\ast \epsilon=f

\begin{aligned} (f\ast \epsilon)(n) & =\sum\limits_{d\mid n} f(d)\times \epsilon(\frac{n}{d}) \\ & =f(n)\ast \epsilon(1)+\sum\limits_{d\mid n \And d<n} f(d)\times \epsilon(\frac{n}{d}\neq 1) \\ & =f(n) \end{aligned}

逆元:f=g\leftrightarrow f\ast h=g\ast h

\begin{aligned} (f\ast h)(x)-(g\ast h)(x) & =((f-g)\ast h)(x)\\ & =\sum\limits_{d\mid x} (f(d)-g(d))\times h(\frac{n}{d}) \end{aligned} \begin{aligned} (f\ast h)(x)-(g\ast h)(x) & =\sum\limits_{d\mid x} (f(d)-g(d))\times h(\frac{n}{d}) \\ & =(f(x)-g(x))h(1) \\ & \neq 0 \end{aligned} \begin{aligned} \epsilon(n) & =\sum\limits_{d\mid n} f(d)g(\frac{n}{d}) \\ & =f(1)g(n)+\sum\limits_{d\mid n\And d>1} f(d)g(\frac{n}{d}) \\ \end{aligned} g(n)=\epsilon(n)-\sum\limits_{d\mid n\And d>1} f(d)g(\frac{n}{d}) g(n)= \begin{cases} 1 & n=1 \\ \sum\limits_{d\mid n\And d>1} f(d)g(\frac{n}{d}) & n>1 \end{cases}

交换律:f\ast g=g\ast f

对加法的分配律:(f+g)\ast h=f\ast h+g\ast h

积性函数上的封闭性

\begin{aligned} h(a)h(b) & =\sum\limits_{d_1\mid a} f(d_1)g(\frac{a}{d_1}) \sum\limits_{d_2\mid b} f(d_2)g(\frac{b}{d_2}) \\ & =\sum\limits_{d\mid ab} f(d)g(\frac{ab}{d}) \\ & =h(ab) \end{aligned}

积性函数的逆元还是积性函数

\muI 互为逆元:\mu\ast I=\epsilon

\begin{aligned} \sum\limits_{i=0}^{k} \mu(p^i)\times I(p^{k-i}) & =\sum\limits_{i=0}^{k} \mu(p^i) \\ & =\mu(p^0)+\mu(p^1) \\ & =1+(-1) \\ & =0 \end{aligned} \begin{aligned} [\gcd(i,j)=1] & =\epsilon(gcd(i,j)) \\ & =(\mu\ast I)(gcd(i,j)) \\ & =\sum\limits_{d\mid gcd(i,j)} \mu(d) \end{aligned}

\varphi 的狄利克雷前缀和是 id\varphi\ast I=id

\begin{aligned} (\varphi\ast I)(p^k) & =\sum\limits_{i=0}^k \varphi(p^i) \\ & =p^0+(p^1-p^0)+(p^2-p^1)+\dots \\ & =p^k \\ & =id \end{aligned}

\varphi=id\ast \mu

d=I\ast I

(I\ast I)(n)=\sum\limits_{d\mid n} 1

\sigma_0=id\ast I

(id\ast I)(n)=\sum\limits_{d\mid n} d

狄利克雷前缀和

整除分块