【数学】快速幂
首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:
假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时
a^11=a(2^0+2^1+2^3)
11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a2^0*a2^1*a2^3,也就是a1*a2*a8 ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子
由于是二进制,很自然地想到用位运算这个强大的工具:&和>> &运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。 >>运算比较单纯,二进制去掉最后一位
常规求幂
int pow1(int a,int b){
int r=1;
while(b--) r*=a;
return r;
}
快速求幂(一般)
int pow2(int a,int b){
int r=1,base=a;
while(b!=0){
if(b%2) r*=base;
base*=base;
b/=2;
}
return r;
}
快速求幂 (递归)
int f(int m,int n){ //m^n
if(n==1) return m;
int temp=f(m,n/2);
return (n%2==0 ? 1 : m)*temp*temp;
}
快速求幂(位运算)
int pow3(int x,int n){
if(n==0) return 1;
else {
while((n&1)==0){
n>>=1;
x*=x;
}
}
int result=x;
n>>=1;
while(n!=0){
x*=x;
if(n&1) result*=x;
n>>=1;
}
return result;
}
快速求幂(位运算,更简洁)
int pow4(int a,int b){
int r=1,base=a;
while(b){
if(b&1) r*=base;
base*=base;
b>>=1;
}
return r;
}