数学物理方法:度规推导
xeri_chen
·
·
学习·文化课
曲线坐标系的度量(度规)
度规
线元
{\mathrm{d}r}^2=\sum_i{{\mathrm{d} x_i}^2}
对\mathrm{d}x全微分
\mathrm{d}x_i=\sum_j{\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j}
平方得
\sum_i{\mathrm{d}{x_i}^2}=\sum_i{\left[ \left( \sum_j{\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j} \right) \left( \sum_k{\frac{\partial x_i}{\partial u_k}\mathrm{d}u_k} \right) \right]}
提出求和符号
\sum_i{\mathrm{d}{x_i}^2}=\sum_i{\sum_j{\sum_k{\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j\frac{\partial x_i}{\partial u_k}\mathrm{d}u_k}}}
引入爱因斯坦求和约定
\begin{aligned}
\mathrm{d}r^2&=\mathrm{d}x_i\mathrm{d}x_i\\
&=\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j\frac{\partial x_i}{\partial u_k}\mathrm{d}u_k\\
&=\frac{\partial x_i}{\partial u_j}\frac{\partial x_i}{\partial u_k}\mathrm{d}u_j\mathrm{d}u_k\\
&=\frac{\partial x_k}{\partial u_i}\frac{\partial x_k}{\partial u_j}\mathrm{d}u_i\mathrm{d}u_j\text{ (此处进行了角标置换,方便后续定义)}\\
&\equiv g_{ij}\mathrm{d}u_i\mathrm{d}u_j\\
\end{aligned}
其中g_{ij}即定义为度规,是一个二阶张量,即矩阵
g_{ij}=\frac{\partial x_k}{\partial u_i}\frac{\partial x_k}{\partial u_j}
度规的意义及度量分量
在正交曲线系中
g_{ij}=\delta_{ij}g_{ii}\text{ 此处}i\text{不求和}
对于u_i方向曲线微元
\mathrm{d}s_i=\sqrt{g_{ii}}\mathrm{d}u_i\equiv h_i\mathrm{d}u_i
其中h_i定义为度量分量,是一个与坐标系有关的常数
h_i=\sqrt{g_{ii}}
这时,体积元为
\mathrm{d}V=\prod_{i}{\mathrm{d}s_i}=\prod_{i}{h_i\mathrm{d}u_i}
注意h_i需要先平方再求和最后再开方,即平方平均数
h_i=\sqrt{\sum_{k}{\left( \frac{\partial x_k}{\partial u_i} \right)^2 } }
例题:
球坐标系的度规和度量分量
\begin{cases}
x=r\cos \theta \cos \phi\\
y=r\cos \theta \sin \phi\\
z=r\sin \theta\\
\end{cases}
计算全微分
\begin{aligned}
\mathrm{d}x&=\frac{\partial x}{\partial r}\mathrm{d}r+\frac{\partial x}{\partial \theta}\mathrm{d}\theta +\frac{\partial x}{\partial \phi}\mathrm{d}\phi\\
&=\sin \theta \cos \phi \mathrm{d}r+r\cos \theta \cos \phi \mathrm{d}\theta -r\sin \theta \sin \phi \mathrm{d}\phi\\
\mathrm{d}y&=\frac{\partial y}{\partial r}\mathrm{d}r+\frac{\partial y}{\partial \theta}\mathrm{d}\theta +\frac{\partial y}{\partial \phi}\mathrm{d}\phi\\
&=\sin \theta \sin \phi \mathrm{d}r+r\cos \theta \sin \phi \mathrm{d}\theta +r\sin \theta \cos \phi \mathrm{d}\phi\\
\mathrm{d}z&=\frac{\partial z}{\partial r}\mathrm{d}r+\frac{\partial z}{\partial \theta}\mathrm{d}\theta +\frac{\partial z}{\partial \phi}\mathrm{d}\phi\\
&=\cos \theta \mathrm{d}r-r\sin \theta \mathrm{d}\theta\\
\end{aligned}
即
\begin{cases}
\mathrm{d}x =\sin \theta \cos \phi \mathrm{d}r+r\cos \theta \cos \phi \mathrm{d}\theta -r\sin \theta \sin \phi \mathrm{d}\phi\\
\mathrm{d}y =\sin \theta \sin \phi \mathrm{d}r+r\cos \theta \sin \phi \mathrm{d}\theta +r\sin \theta \cos \phi \mathrm{d}\phi\\
\mathrm{d}z =\cos \theta \mathrm{d}r-r\sin \theta \mathrm{d}\theta\\
\end{cases}
可以用一个矩阵表示每个偏导 (备注:矩阵是一张表)
\left[ \begin{matrix}
\sin \theta \cos \phi& r\cos \theta \cos \phi& -r\sin \theta \sin \phi\\
\sin \theta \sin \phi& r\cos \theta \sin \phi& r\sin \theta \cos \phi\\
\cos \theta& -r\sin \theta& 0\\
\end{matrix} \right]
对每一项平方,再竖着相加得到度规
\begin{aligned}
&g_{11}=\left( \sin \theta \cos \phi \right) ^2+\left( \sin \theta \sin \phi \right) ^2+\left( \cos \theta \right) ^2=1\\
&g_{22}=\left( r\cos \theta \cos \phi \right) ^2+\left( r\cos \theta \sin \phi \right) ^2+\left( -r\sin \theta \right) ^2=r^2\\
&g_{33}=\left( -r\sin \theta \sin \phi \right) ^2+\left( r\sin \theta \cos \phi \right) ^2=r^2\sin^2 \theta
\end{aligned}
最后开方得到度量分量
\begin{cases}
h_1=1\\
h_2=r\\
h_3=r\sin \theta
\end{cases}
极坐标下的度规和度量分量
(备注:柱坐标同理)