数学物理方法:度规推导

· · 学习·文化课

曲线坐标系的度量(度规)

度规

线元

{\mathrm{d}r}^2=\sum_i{{\mathrm{d} x_i}^2}

\mathrm{d}x全微分

\mathrm{d}x_i=\sum_j{\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j}

平方得

\sum_i{\mathrm{d}{x_i}^2}=\sum_i{\left[ \left( \sum_j{\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j} \right) \left( \sum_k{\frac{\partial x_i}{\partial u_k}\mathrm{d}u_k} \right) \right]}

提出求和符号

\sum_i{\mathrm{d}{x_i}^2}=\sum_i{\sum_j{\sum_k{\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j\frac{\partial x_i}{\partial u_k}\mathrm{d}u_k}}}

引入爱因斯坦求和约定

\begin{aligned} \mathrm{d}r^2&=\mathrm{d}x_i\mathrm{d}x_i\\ &=\frac{\partial x_i}{\partial u_j}\mathrm{d}u_j\frac{\partial x_i}{\partial u_k}\mathrm{d}u_k\\ &=\frac{\partial x_i}{\partial u_j}\frac{\partial x_i}{\partial u_k}\mathrm{d}u_j\mathrm{d}u_k\\ &=\frac{\partial x_k}{\partial u_i}\frac{\partial x_k}{\partial u_j}\mathrm{d}u_i\mathrm{d}u_j\text{ (此处进行了角标置换,方便后续定义)}\\ &\equiv g_{ij}\mathrm{d}u_i\mathrm{d}u_j\\ \end{aligned}

其中g_{ij}定义为度规,是一个二阶张量,即矩阵

g_{ij}=\frac{\partial x_k}{\partial u_i}\frac{\partial x_k}{\partial u_j}

度规的意义及度量分量

在正交曲线系中

g_{ij}=\delta_{ij}g_{ii}\text{ 此处}i\text{不求和}

对于u_i方向曲线微元

\mathrm{d}s_i=\sqrt{g_{ii}}\mathrm{d}u_i\equiv h_i\mathrm{d}u_i

其中h_i定义为度量分量,是一个与坐标系有关的常数

h_i=\sqrt{g_{ii}}

这时,体积元为

\mathrm{d}V=\prod_{i}{\mathrm{d}s_i}=\prod_{i}{h_i\mathrm{d}u_i}

注意h_i需要先平方再求和最后再开方,即平方平均数

h_i=\sqrt{\sum_{k}{\left( \frac{\partial x_k}{\partial u_i} \right)^2 } }

例题:

球坐标系的度规和度量分量

\begin{cases} x=r\cos \theta \cos \phi\\ y=r\cos \theta \sin \phi\\ z=r\sin \theta\\ \end{cases}

计算全微分

\begin{aligned} \mathrm{d}x&=\frac{\partial x}{\partial r}\mathrm{d}r+\frac{\partial x}{\partial \theta}\mathrm{d}\theta +\frac{\partial x}{\partial \phi}\mathrm{d}\phi\\ &=\sin \theta \cos \phi \mathrm{d}r+r\cos \theta \cos \phi \mathrm{d}\theta -r\sin \theta \sin \phi \mathrm{d}\phi\\ \mathrm{d}y&=\frac{\partial y}{\partial r}\mathrm{d}r+\frac{\partial y}{\partial \theta}\mathrm{d}\theta +\frac{\partial y}{\partial \phi}\mathrm{d}\phi\\ &=\sin \theta \sin \phi \mathrm{d}r+r\cos \theta \sin \phi \mathrm{d}\theta +r\sin \theta \cos \phi \mathrm{d}\phi\\ \mathrm{d}z&=\frac{\partial z}{\partial r}\mathrm{d}r+\frac{\partial z}{\partial \theta}\mathrm{d}\theta +\frac{\partial z}{\partial \phi}\mathrm{d}\phi\\ &=\cos \theta \mathrm{d}r-r\sin \theta \mathrm{d}\theta\\ \end{aligned}

\begin{cases} \mathrm{d}x =\sin \theta \cos \phi \mathrm{d}r+r\cos \theta \cos \phi \mathrm{d}\theta -r\sin \theta \sin \phi \mathrm{d}\phi\\ \mathrm{d}y =\sin \theta \sin \phi \mathrm{d}r+r\cos \theta \sin \phi \mathrm{d}\theta +r\sin \theta \cos \phi \mathrm{d}\phi\\ \mathrm{d}z =\cos \theta \mathrm{d}r-r\sin \theta \mathrm{d}\theta\\ \end{cases}

可以用一个矩阵表示每个偏导 (备注:矩阵是一张表)

\left[ \begin{matrix} \sin \theta \cos \phi& r\cos \theta \cos \phi& -r\sin \theta \sin \phi\\ \sin \theta \sin \phi& r\cos \theta \sin \phi& r\sin \theta \cos \phi\\ \cos \theta& -r\sin \theta& 0\\ \end{matrix} \right]

对每一项平方,再竖着相加得到度规

\begin{aligned} &g_{11}=\left( \sin \theta \cos \phi \right) ^2+\left( \sin \theta \sin \phi \right) ^2+\left( \cos \theta \right) ^2=1\\ &g_{22}=\left( r\cos \theta \cos \phi \right) ^2+\left( r\cos \theta \sin \phi \right) ^2+\left( -r\sin \theta \right) ^2=r^2\\ &g_{33}=\left( -r\sin \theta \sin \phi \right) ^2+\left( r\sin \theta \cos \phi \right) ^2=r^2\sin^2 \theta \end{aligned}

最后开方得到度量分量

\begin{cases} h_1=1\\ h_2=r\\ h_3=r\sin \theta \end{cases}

极坐标下的度规和度量分量

(备注:柱坐标同理)