正弦定理补证

· · 算法·理论

已知:\triangle ABC 的三个顶点 ABC 在半径为 R\bigcirc O 上,三个顶点的对边分别为 a, b, c.

求证:\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R

证明:连接 OBOC,作 \angle BOC 的角平分线 ODBCD

\therefore$ $\angle BOD$ $=$ $\angle COD$ $=$ $\dfrac{1}{2}$ $\angle BOC \because$ $OB$ $=$ $OC \therefore$ $BD$ $=$ $CD$ $=$ $\dfrac{1}{2}$ $BC$ $=$ $\dfrac{1}{2}$ $a $\therefore$ $\angle A$ $=$ $\dfrac{1}{2}$ $\angle BOC \therefore$ $\angle A$ $=$ $\angle BOD \therefore$ $\sin A$ = $\sin$ $\angle BOD$ $=$ $\dfrac{BD}{OB} \therefore$ $\dfrac{a}{\sin A}$ $=$ $\dfrac{a \times OB}{BD}$ $=$ $\dfrac{a \times OB}{\dfrac{1}{2} a}$ $=$ $2OB$ $=$ $2R

同理 \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R

\therefore$ $\dfrac{a}{\sin A}$ $=$ $\dfrac{b}{\sin B}$ $=$ $\dfrac{c}{\sin C}$ $=$ $2R