两个结论的证明记录

· · 个人记录

powerful number 计数

\le x 的 powerful number 有 P(x) 个,那么

P(x)\sim\frac{\zeta(3/2)}{\zeta(3)}x^{1/2}

证明:注意到每个 powerful number 都可以被唯一地写成 a^3b^2 的形式,其中 a 无平方因子。于是

\begin{aligned} P(x)&=\sum_{\scriptstyle a^3b^2\le x\atop\scriptstyle a\text{ is squarefree}}1\\ &=\sum_{\scriptstyle a\le x^{1/3}\atop\scriptstyle a\text{ is squarefree}}\left\lfloor\sqrt{x/a^3}\right\rfloor\\ &=\sum_{\scriptstyle a\le x^{1/3}\atop\scriptstyle a\text{ is squarefree}}\left(\sqrt{x/a^3}+O(1)\right)\\ &=x^{1/2}{\color{red}\sum_{\scriptstyle a\le x^{1/3}\atop\scriptstyle a\text{ is squarefree}}\sqrt{1/a^3}}+O(x^{1/3}) \end{aligned}

记红色的和为 S,注意到

\begin{aligned} \sum_{a\text{ is squarefree}}a^{-3/2}&=\prod_p\left(1+p^{-3/2}\right)\\ &=\prod_p\left(\frac{1-p^{-3}}{1-p^{-3/2}}\right)\\ &=\frac{\zeta(3/2)}{\zeta(3)} \end{aligned}

而且

\begin{aligned} \sum_{\scriptstyle a>x^{1/3}\atop\scriptstyle a\text{ is squarefree}}a^{-3/2}&\le\sum_{a>x^{1/3}}a^{-3/2}\\ &=O(x^{-1/6}) \end{aligned}

S=\frac{\zeta(3/2)}{\zeta(3)}+O(x^{-1/6}),故 P(x)=\frac{\zeta(3/2)}{\zeta(3)}x+O(x^{1/3})

1/\varphi 的求和

\sum_{n\le x}\frac{1}{\varphi(n)}=\frac{\zeta(2)\zeta(3)}{\zeta(6)}\ln x+o(\ln x)

证明:注意到 \mathrm{id}/\varphi=\mathbf{1}*(\mu^2/\varphi),故

\begin{aligned} \sum_{n\le x}\frac{1}{\varphi(n)}&=\sum_{n\le x}\frac{1}{n}\sum_{\scriptstyle d\mid n\atop\scriptstyle d\text{ is squarefree}}\frac{1}{\varphi(d)}\\ &=\sum_{\scriptstyle d\le x\atop\scriptstyle d\text{ is squarefree}}\frac{1}{\varphi(d)}\sum_{m\le x/d}\frac{1}{dm}\\ &=\sum_{\scriptstyle d\le x\atop\scriptstyle d\text{ is squarefree}}\frac{1}{d\varphi(d)}(\ln (x/d)+\gamma+O(d/x))\\ &=\sum_{\scriptstyle d\le x\atop\scriptstyle d\text{ is squarefree}}\frac{\ln x-\ln d+\gamma}{d\varphi(d)}+O\left(\sum_{\scriptstyle d\le x\atop\scriptstyle d\text{ is squarefree}}\frac{1}{x\varphi(d)}\right) \end{aligned}

后面懒得敲了,自己推吧((