十行证明拉格朗日反演
Elegia
·
·
个人记录
Lemma. [x^{-1}]F'(x)F^k(x)=[k=-1]
证明:考虑当 k\neq -1,有 F'(x)F^k(x)=(\frac1{k+1}F^{k+1}(x))'。
证明:
\begin{aligned}G(F(x))^k &= x^k\\(G^k)'(F)F' &= kx^{k-1}\\\sum_{i} i([x^i] G^k(x)) F^{i-1}F' &= kx^{k-1}\\\sum_{i} i([x^i] G^k(x)) F^{i-1-n}F' &= kx^{k-1}F^{-n}\\ [x^{-1}]\sum_{i} i([x^i] G^k(x)) F^{i-1-n}F' &= [x^{-1}]kx^{k-1}F^{-n}\\ n[x^n] G^k &= [x^{-1}]kx^{k-1}F^{-n}\\ n[x^n] G^k &= k[x^{-k}]F^{-n}\end{aligned}