刚学IDFT,求大佬解答我的疑惑

学术版

学术帖不删也没事吧,删了还浪费编号
by 警策看取 @ 2020-04-05 22:19:32


@[违规用户名FkZyA0!2](/user/51569) 有一种比较直观的方式,是把 DFT 写成矩阵乘法的形式,IDFT 就是转移矩阵的逆,然后就能搞出来了
by NaCly_Fish @ 2020-04-05 22:23:43


OIer 不需要证明,只需要背结论((((((((((((
by WYXkk @ 2020-04-05 22:24:58


@[NaCly_Fish](/user/115864) 谢谢
by wgyhm @ 2020-04-05 22:27:17


### DFT与IDFT $$DFT:b_k=\sum\limits_{i=0}^{n-1}ai·\omega_n^{ki} (0 \leq k < n)$$ $$IDFT:a_k=\frac{1}{n} \sum\limits_{i=0}^{n-1}b_i·\omega_n^{-ki} (0 \leq k < n)$$ 证明如下: 将$DFT$带入$IDFT$得到: $$\begin{aligned}\sum\limits_{i=0}^{n-1}b_i·\omega_n^{-ki} & =\sum\limits_{i=0}^{n-1}\omega_n^{ij}a_j \\ & = \sum\limits_{j=0}^{n-1}a_j\sum\limits_{i=0}^{n-1}\omega_n^{-ki}·\omega_n^{ij} \\& =\sum\limits_{j=0}^{n-1}a_j\sum\limits_{i=0}^{n-1}\omega_n^{i(j-k)} \end{aligned}$$ 对于$\sum\limits_{i=0}^{n-1}\omega_n^{i(j-k)}$: 若$j=k$,则 $$\sum\limits_{i=0}^{n-1}\omega_n^{i(j-k)}=\sum\limits_{i=0}^{n-1}1=n$$ 若$j\not=k$,则因为$0\le j,k<n$,有$|j-k|<n$,所以$\omega_n^{j-k}\not=1$,可以利用等比数列求和得到: $$\begin{aligned}\sum\limits_{i=0}^{n-1}\omega_n^{i(j-k)} & =\sum\limits_{i=0}^{n-1}(\omega_n^{j-k})^i\\& =\frac{1-(\omega_n^{j-k})^n}{1-\omega_n^{j-k}}\\& =\frac{1-(\omega_n^n)^{j-k}}{1-\omega_n^{j-k}}\\& =\frac{1-1}{1-\omega_n^{j-k}}\\& = 0\end{aligned}$$ 因此有 $$\begin{aligned}\frac{1}{n}\sum\limits_{i=0}^{n-1}b_i·\omega_n^{-ki} & =\frac{1}{n}\sum\limits_{i=0}^{n-1}\omega_n^{ij}a_j\\ & =\frac{1}{n}\sum\limits_{j=0}^{n-1}a_j\sum\limits_{i=0}^{n-1}\omega_n^{i(j-k)}\\ & =\frac{1}{n}·na_k\\ & =a_k \end{aligned}$$
by 盧鋅 @ 2020-04-15 13:35:14


|